1. Bhatia SK. Biomaterials for clinical applications. New York: Springer New York; 2010.
2. Loebsack A, Greene K, Wyatt S, et al. In vivo characterization of a porous hydrogel material for use as a tissue bulking agent. J Biomed Mater Res 2001;57:575-81.
6. Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 2012;158:15-33.
7. Guarino V, Lewandowska M, Bil M, et al. Morphology and degradation properties of PCL/HYAFF11® composite scaffolds with multi-scale degradation rate. Compos Sci Technol 2010;70:1826-37.
9. Liu S, Sandner B, Schackel T, et al. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomater 2017;60:167-80.
11. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006;6:623-33.
12. Schierbaum F. Book review: polysaccharides and polyamides in the food industry. properties, production, and patents. Starch Stärke 2005;57:453.
13. Jeong HJ, Yun Y, Lee SJ, et al. Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 2021;144:104973.
16. Dhoot NO, Tobias CA, Fischer I, et al. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A 2004;71:191-200.
17. Haug A, Smidsrød O, Wachtmeister CA, et al. Fractionation of alginates by precipitation with calcium and magnesium ions. Acta Chem Scand 1965;19:1221-6.
18. Haug A, Claeson K, Hansen SE, et al. Fractionation of alginic acid. Acta Chem Scand 1959;13:601-3.
19. Assunção-Silva RC, Gomes ED, Sousa N, et al. Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells Int 2015;2015:948040.
21. Matyash M, Despang F, Ikonomidou C, et al. Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth. Tissue Eng Part C Methods 2014;20:401-11.
24. Lambricht L, De Berdt P, Vanacker J, et al. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla. Dent Mater 2014;30:e349-61.
25. Sarker B, Papageorgiou DG, Silva R, et al. Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B Mater Biol Med 2014;2:1470-82.
26. Ghasemiyeh P, Mohammadi-Samani S. Hydrogels as drug delivery systems; pros and cons. Trends Pharm Sci 2019;5:7-24.
27. Krebs MD, Salter E, Chen E, et al. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 2010;92:1131-8.
28. Lawson MA, Barralet JE, Wang L, et al. Adhesion and growth of bone marrow stromal cells on modified alginate hydrogels. Tissue Eng 2004;10:1480-91.
34. Schmocker A, Khoushabi A, Frauchiger DA, et al. A photopolymerized composite hydrogel and surgical implanting tool for a nucleus pulposus replacement. Biomaterials 2016;88:110-9.
35. Li J, Illeperuma WRK, Suo Z, et al. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett 2014;3:520-3.
37. Shu XZ, Zhu KJ. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm 2002;54:235-43.
38. Yao KD, Peng T, Goosen MFA, et al. pH-sensitivity of hydrogels based on complex forming chitosan: Polyether interpenetrating polymer network. J Appl Polym Sci 1993;48:343-54.
39. Khong TT, Aarstad OA, Skjåk-Bræk G, et al. Gelling concept combining chitosan and alginate-proof of principle. Biomacromolecules 2013;14:2765-71.
40. Li Z, Ramay HR, Hauch KD, et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 2005;26:3919-28.
41. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 2010;62:12-27.
44. Iwasaki N, Yamane ST, Majima T, et al. Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules 2004;5:828-33.
47. Yang Y, Wang X, Yang F, et al. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv Mater 2016;28:7178-84.
50. Ashton RS, Banerjee A, Punyani S, et al. Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 2007;28:5518-25.
51. Novikova LN, Mosahebi A, Wiberg M, et al. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A 2006;77:242-52.
53. Kataoka K, Suzuki Y, Kitada M, et al. Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng 2004;10:493-504.
54. Quencer RM, Bunge RP. The injured spinal cord: imaging, histopathologic clinical correlates, and basic science approaches to enhancing neural function after spinal cord injury. Spine 1996;21:2064-6.
55. Bodley R. Imaging in chronic spinal cord injury--indications and benefits. Eur J Radiol 2002;42:135-53.
56. Siddiqui AM, Khazaei M, Fehlings MG. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog Brain Res 2015;218:15-54.
57. Prang P, Müller R, Eljaouhari A, et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 2006;27:3560-9.
58. Günther MI, Weidner N, Müller R, et al. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord. Acta Biomater 2015;27:140-50.
59. Tobias CA, Han SSW, Shumsky JS, et al. Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma 2005;22:138-56.
60. Tobias CA, Dhoot NO, Wheatley MA, et al. Grafting of encapsulated BDNF-producing fibroblasts into the injured spinal cord without immune suppression in adult rats. J Neurotrauma 2001;18:287-301.
61. Schackel T, Kumar P, Günther M, et al. Peptides and astroglia improve the regenerative capacity of alginate gels in the injured spinal cord. Tissue Eng Part A 2019;25:522-37.
65. Khang G. Handbook of intelligent scaffolds for tissue engineering and regenerative medicine. 2nd ed. Boca Raton (FL): CRC Press; 2017.
68. Wen H, Xiao W, Biswas S, et al. Alginate hydrogel modified with a ligand interacting with α3β1 integrin receptor promotes the differentiation of 3D neural spheroids toward oligodendrocytes in vitro. ACS Appl Mater Interfaces 2019;11:5821-33.
69. Ansorena E, De Berdt P, Ucakar B, et al. Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Int J Pharm 2013;455:148-58.
70. des Rieux A, De Berdt P, Ansorena E, et al. Vascular endothelial growth factor-loaded injectable hydrogel enhances plasticity in the injured spinal cord. J Biomed Mater Res A 2014;102:2345-55.
76. Zhang Z, Ortiz O, Goyal R, et al. Biodegradable polymers. In: Lanza RP, Vacanti J, Langer RSet al., editors. Principles of tissue engineering. Amsterdam: Elsevier; 2014. p. 441-73.