2. Park P, Garton HJ, Gala VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 2004;29:1938-44.
4. Fan W, Zhang C, Zhang DX, et al. Biomechanical evaluation of rigid interspinous process fixation combined with lumbar interbody fusion using hybrid testing protocol. ASME J Biomech Eng 2023;145:064501.
5. Mo Z, Li D, Zhang R, et al. Comparative effectiveness and safety of posterior lumbar interbody fusion, Coflex, Wallis, and X-stop for lumbar degenerative diseases: a systematic review and network meta-analysis. Clin Neurol Neurosurg 2018;172:74-81.
9. Cho HJ, Ko YS, Won YI, et al. The efficacy of lumbar hybrid fusion for the prevention of adjacent segment disease: fact or artifact? A meta-analysis. Clin Spine Surg 2021;34:260-68.
11. Lee CH, Kim YE, Lee HJ, et al. Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw-based dynamic fixator. J Neurosurg Spine 2017;27:643-49.
12. Fan W, Guo LX. Biomechanical investigation of lumbar interbody fusion supplemented with topping-off instrumentation using different dynamic stabilization devices. Spine (Phila Pa 1976) 2021;46:E1311-9.
13. Hammer N, Klima S. In-silico pelvis and sacroiliac joint motion-A review on published research using numerical analyses. Clin Biomech 2019;61:95-104.
16. Ha KY, Lee JS, Kim KW. Degeneration of sacroiliac joint after instrumented lumbar or lumbosacral fusion - A prospective cohort study over five-year follow-up. Spine (Phila Pa 1976) 2008;33:1192-8.
17. Yi J, Nam WD. Radiologic comparison of the sacroiliac joint degeneration following lumbar or lumbosacral fusion. J Korean Soc Spine Surg 2019;26:141-50.
18. Manzetti M, Ruffilli A, Barile F, et al. Sacroiliac joint degeneration and pain after spinal arthrodesis: a systematic review. Clin Spine Surg 2023;36:169-82.
19. Ivanov AA, Kiapour A, Ebraheim NA, et al. Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study. Spine (Phila Pa 1976) 2009;34:162-9.
21. Fan W, Zhang C, Wang QD, et al. The effects of topping-off instrumentation on biomechanics of sacroiliac joint after lumbosacral fusion. Comput Biol Med 2023;164:107357.
22. Lee CH, Hsu CC, Huang PY. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests. Comput Biol Med 2017;87:250-7.
24. Mesbah M, Barkaoui A. Is pedicle-based hybrid stabilization (PBHS) protecting posterior lumbar fixation from adjacent-segment failure? Finite element analysis and comparison of different systems. Orthop Traumatol Surg Res 2021;107:103038.
26. Guo LX, Fan W. Dynamic response of the lumbar spine to whole-body vibration under a compressive follower preload. Spine (Phila Pa 1976) 2018;43:E143-53.
27. Panjabi MM. Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 2007;22:257-65.
29. Jahng TA, Kim YE, Moon KY. Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis. Spine J 2013;13:85-94.
30. Erbulut DU, Zafarparandeh I, Hassan CR, et al. Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study. J Neurosurg Spine 2015;23:200-8.
31. Zhu R, Yu Y, Zeng ZL, et al. A review of the static loads applying on the finite element models of the lumbar spine. J Med Imaging Health Inform 2015;5:893-7.
32. Venayre B, Koyama Y, Kurosawa D, et al. Quantitative evaluation of the sacroiliac joint fixation in stress reduction on both sacroiliac joint cartilage and ligaments: a finite element analysis. Clin Biomech (Bristol, Avon) 2021;85:105350.