1. Mohamadi A, Googanian A, Ahmadi A, et al. Comparison of surgical or nonsurgical treatment outcomes in patients with thoracolumbar fracture with Score 4 of TLICS: a randomized, single-blind, and single-central clinical trial. Medicine (Baltimore) 2018;97:e9842.
6. Street J, Lenehan B, Albietz J, et al. Intraobserver and interobserver reliabilty of measures of kyphosis in thoracolumbar fractures. Spine J 2009;9:464-9.
9. Jafari Z, Karami E. Breast cancer detection in mammography images: a CNN-based approach with feature selection. Information 2023;14:410.
14. Kim KC, Cho HC, Jang TJ, et al. Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation. Comput Methods Programs Biomed 2021;200:105833.
19. Langella F, Villafañe JH, Damilano M, et al. Predictive accuracy of surgimap surgical planning for sagittal imbalance: a cohort study. Spine (Phila Pa 1976) 2017;42:E1297-304.
25. Kuklo TR, Polly DW, Owens BD, et al. Measurement of thoracic and lumbar fracture kyphosis: evaluation of intraobserver, interobserver, and technique variability. Spine (Phila Pa 1976) 2001;26:61-5. discussion 66.
28. He K, Gkioxari G, Dollar P, et al. Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 2020;42:386-97.
32. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Paper presented at: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference; 2015 Oct 5-9; Munich, Germany. Proceedings, Part III 182015.
33. Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Paper presented at: 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28; Columbus (OH), USA.
34. Girshick R. Fast r-cnn. Paper presented at: 2015 IEEE International Conference on Computer Vision (ICCV); 2015 Dec 7-13; Santiago, Chile.
35. Ren S, He K, Girshick R, Sun J. Faster r-cnn: towards real-time object detection with region proposal networks. arXiv 1506.01497. [Preprint]. 2015. Available from:
https://doi.org/10.48550/arXiv.1506.01497.
36. Ruhan S, Owens W, Wiegand R, et al. Intervertebral disc detection in X-ray images using faster R-CNN. Annu Int Conf IEEE Eng Med Biol Soc 2017;2017:564-7.
37. Wu H, Bailey C, Rasoulinejad P, et al. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med Image Anal 2018;48:1-11.
38. Yi J, Wu P, Huang Q, et al. Vertebra-focused landmark detection for scoliosis assessment. Paper presented at: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); 2020 Apr 3-7; Iowa City (IA), USA.