1. An HS, Anderson PA, Haughton VM, et al. Introduction: disc degeneration: summary. Spine (Phila Pa 1976) 2004;29:2677-8.
2. Kuo CH, Chang PY, Wu JC, et al. Dynamic stabilization for L4-5 spondylolisthesis: comparison with minimally invasive transforaminal lumbar interbody fusion with more than 2 years of follow-up. Neurosurg Focus 2016;40:E3.
4. Yeh MY, Kuo CH, Wu JC, et al. Changes of facet joints after dynamic stabilization: continuous degeneration or slow fusion? World Neurosurg 2018;113:e45-50.
5. Kornblum MB, Fischgrund JS, Herkowitz HN, et al. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective long-term study comparing fusion and pseudarthrosis. Spine (Phila Pa 1976) 2004;29:726-33. discussion 733-4.
10. Pfirrmann CWA, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873-8.
11. Modic MT, Steinberg PM, Ross JS, et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988;166(1 Pt 1):193-9.
12. Abdollah V, Parent EC, Battié MC. Reliability and validity of lumbar disc height quantification methods using magnetic resonance images. Biomed Tech (Berl) 2019;64:111-7.
14. Videman T, Battié MC, Gibbons LE, et al. Aging changes in lumbar discs and vertebrae and their interaction: a 15-year follow-up study. Spine J 2014;14:469-78.
15. Korez R, Likar B, Pernuš F, et al. Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In: Ourselin S, Joskowicz L, Sabuncu M, et al., editors. Medical image computing and computer-assisted intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Cham (Switzerland): Springer; 2016. p. 433-41.
16. Al Arif SMMR, Knapp K, Slabaugh G. Fully automatic cervical vertebrae segmentation framework for X-ray images. Comput Methods Programs Biomed 2018;157:95-111.
17. Chuang CH, Lin CY, Tsai YY, et al. Efficient triple output network for vertebral segmentation and identification. IEEE Access 2019;7:117978-85.
18. Lin L, Tao X, Pang S, et al. Multiple axial spine indices estimation via dense enhancing network with cross-space distance-preserving regularization. IEEE J Biomed Health Inform 2020;24:3248-57.
23. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116-28.
24. Kuo CH, Huang WC, Wu JC, et al. Radiological adjacentsegment degeneration in L4–5 spondylolisthesis: comparison between dynamic stabilization and minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine 2018;29:250-8.
27. Dhanachandra N, Manglem K, Chanu YJ. Image segmentation using K -means clustering algorithm and subtractive clustering algorithm. Procedia Comput Sci 2015;54:764-71.
29. Wang Z, Xiao P, Tan H. Spinal magnetic resonance image segmentation based on U-net. J Radiat Res Appl Sci 2023;16:100627.
30. Borawar L, Kaur R. ResNet: solving vanishing gradient in deep networks. In: Mahapatra RP, Peddoju SK, Roy S, Parwekar Pet al., editors. Proceedings of International Conference on Recent Trends in Computing. Lecture notes in networks and systems, vol 600. Singapore: Springer; 2023. p. 235-47.
31. Shereena VB, Raju G. Medical ultrasound image segmentation using Multi-Residual U-Net architecture. Multimed Tools Appl 2024;83:27067-88.
33. Qi J, Yu Y, Wang L, et al. K*-Means: an effective and efficient K-means clustering algorithm. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom); 2016 Oct 8-10; Atlanta (GA), USA.
34. Abbas J, Hamoud K, Masharawi YM, et al. Ligamentum flavum thickness in normal and stenotic lumbar spines. Spine (Phila Pa 1976) 2010;35:1225-30.
35. Meyerding HW. Low backache and sciatic pain associated with spondylolisthesis and protruded intervertebral disc: incidence, significance, and treatment. JBJS 1941;23:461-70.
36. Schizas C, Theumann N, Burn A, et al. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976) 2010;35:1919-24.