1. Tarpada SP, Morris MT, Burton DA. Spinal fusion surgery: a historical perspective. J Orthop 2017;14:134-6.
2. Hadra BE. The classic: wiring of the vertebrae as a means of immobilization in fracture and Potts’ disease. Berthold E. Hadra. Med Times and Register, Vol22, May 23, 1891. Clin Orthop Relat Res 1975;(112):4-8.
3. Bohlman HH. Acute fractures and dislocations of the cervical spine. An analysis of three hundred hospitalized patients and review of the literature. J Bone Joint Surg Am 1979;61:1119-42.
4. Cahill DW, Bellegarrigue R, Ducker TB. Bilateral facet to spinous process fusion: a new technique for posterior spinal fusion after trauma. Neurosurgery 1983;13:1-4.
5. Callahan RA, Johnson RM, Margolis RN, et al. Cervical facet fusion for control of instability following laminectomy. J Bone Joint Surg Am 1977;59:991-1002.
6. Yoshihara H. Rods in spinal surgery: a review of the literature. Spine J 2013;13:1350-8.
7. Merriwether M, Shockey R. inventors; Box cage for intervertebral body fusion. United States patent. US1,9990,436,593.1999, November 09.
8. Kersten RF, van Gaalen SM, de Gast A, et al. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J 2015;15:1446-60.
9. Farrokhi MR, Nikoo Z, Gholami M, et al. Comparison between acrylic cage and polyetheretherketone (PEEK) cage in single-level anterior cervical discectomy and fusion: a randomized clinical trial. Clin Spine Surg 2017;30:38-46.
10. Kienle A, Graf N, Wilke HJ. Does impaction of titaniumcoated interbody fusion cages into the disc space cause wear debris or delamination? Spine J 2016;16:235-42.
11. Suh PB, Puttlitz C, Lewis C, et al. The effect of cervical interbody cage morphology, material composition, and substrate density on cage subsidence. J Am Acad Orthop Surg 2017;25:160-8.
13. Richardson B, Paulzak A, Rusyniak WG, et al. Anterior lumbar corpectomy with expandable titanium cage reconstruction: a case series of 42 patients. World Neurosurg 2017;108:317-24.
14. Seaman S, Kerezoudis P, Bydon M, et al. Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci 2017;44:23-9.
15. Datla NV, Konh B, Koo JJ, et al. Polyacrylamide phantom for self-actuating needle-tissue interaction studies. Med Eng Phys 2014;36:140-5.
17. Majd ME, Vadhva M, Holt RT. Anterior cervical reconstruction using titanium cages with anterior plating. Spine (Phila Pa 1976) 1999;24:1604-10.
18. Long M, Rack HJ. Titanium alloys in total joint replacement--a materials science perspective. Biomaterials 1998;19:1621-39.
19. Kong F, Nie Z, Liu Z, et al. Developments of nano-TiO2 incorporated hydroxyapatite/PEEK composite strut for cervical reconstruction and interbody fusion after corpectomy with anterior plate fixation. J Photochem Photobiol B 2018;187:120-5.
20. Kuo MC, Tsai CM, Huang JC, et al. PEEK composites reinforced by nano-sized SiO2 and A12O3^Os particulates. Mater Chem Phys 2005;90:185-95.
22. Vadapalli S, Sairyo K, Goel VK, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine (Phila Pa 1976) 2006;31:E992-8.
23. Chen Y, Wang X, Lu X, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J 2013;22:1539-46.
24. Kersten R, Wu G, Pouran B, et al. Comparison of polyetheretherketone versus silicon nitride intervertebral spinal spacers in a caprine model. J Biomed Mater Res B Appl Biomater 2019;107:688-99.
25. Natarajan RN, Watanabe K, Hasegawa K, et al. Biomechanical analysis of a long-segment fusion in a lumbar spine-a finite element model study. J Biomech Eng 2018;140(9):
https://doi.org/10.1115/1.4039989.
27. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 1962;44-A:591-610.
28. Lindsey C, Deviren V, Xu Z, et al. The effects of rod contouring on spinal construct fatigue strength. Spine (Phila Pa 1976) 2006;31:1680-7.
29. Glotzbecker MP, Riedel MD, Vitale MG, et al. What’s the evidence? Systematic literature review of risk factors and preventive strategies for surgical site infection following pediatric spine surgery. J Pediatr Orthop 2013;33:479-87.
30. Asher MA, Carson WL, Hardacker JW, et al. The effect of arthrodesis, implant stiffness, and time on the canine lumbar spine. J Spinal Disord Tech 2007;20:549-59.
31. Dobbs MB, Lenke LG, Kim YJ, et al. Anterior/posterior spinal instrumentation versus posterior instrumentation alone for the treatment of adolescent idiopathic scoliotic curves more than 90 degrees. Spine (Phila Pa 1976) 2006;31:2386-91.
32. Gotman I. Characteristics of metals used in implants. J Endourol 1997;6:383-9.
33. Ebraheim NA, Rupp RE, Savolaine ER, et al. Posterior plating of the cervical spine. J Spinal Disord 1995;8:111-5.
34. Serhan H, Mhatre D, Newton P, et al. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves? J Spinal Disord Tech 2013;26:E70-74.
36. Ahmad FU, Sidani C, Fourzali R, et al. Postoperative magnetic resonance imaging artifact with cobalt-chromium versus titanium spinal instrumentation: presented at the 2013 Joint Spine Section Meeting. Clinical article. J Neurosurg Spine 2013;19:629-36.
37. Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1968;1:105-20.
39. Biesiekierski A, Wang J, Gepreel MA, et al. A new look at biomedical Ti-based shape memory alloys. Acta Biomater 2012;8:1661-9.
40. Ponnappan RK, Serhan H, Zarda B, et al. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J 2009;9:263-7.
41. Cook SD, Patron LP, Christakis PM, et al. Comparison of methods for determining the presence and extent of anterior lumbar interbody fusion. Spine (Phila Pa 1976) 2004;29:1118-23.
42. Grob D, Benini A, Junge A, et al. Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976) 2005;30:324-31.
43. Dick JC, Bourgeault CA. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine (Phila Pa 1976) 2001;26:1668-72.
44. Zhao X, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater 2012;8:1990-7.
45. Nguyen TQ, Buckley JM, Ames C, et al. The fatigue life of contoured cobalt chrome posterior spinal fusion rods. Proc Inst Mech Eng H 2011;225:194-8.
46. Liu H, Niinomi M, Nakai M, et al. Mechanical properties and cytocompatibility of oxygen-modified beta-type Ti-Cr alloys for spinal fixation devices. Acta Biomater 2015;12:352-61.
48. Tsuang FY, Hsieh YY, Kuo YJ, et al. Assessment of the suitability of biodegradable rods for use in posterior lumbar fusion: an in-vitro biomechanical evaluation and finite element analysis. PLoS One 2017;12:e0188034.
49. Lee SM, Suk SI, Chung ER. Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2004;29:343-9.
50. Liu B, Liu R, Wang L. A meta-analysis of the preoperative use of gabapentinoids for the treatment of acute postoperative pain following spinal surgery. Medicine (Baltimore) 2017;96:e8031.
51. Jansen JA, van de Waerden JP, Wolke JG, et al. Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res 1991;25:973-89.
52. Hasegawa T, Inufusa A, Imai Y, et al. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J 2005;5:239-43.
53. Sanden B, Olerud C, Johansson C, et al. Improved bone-screw interface with hydroxyapatite coating: an in vivo study of loaded pedicle screws in sheep. Spine (Phila Pa 1976) 2001;26:2673-8.
54. Yi S, Rim DC, Park SW, et al. Biomechanical comparisons of pull out strengths after pedicle screw augmentation with hydroxyapatite, calcium phosphate, or polymethylmethacrylate in the cadaveric spine. World Neurosurg 2015;83:976-81.
55. Shi LY, Wang A, Zang FZ, et al. Tantalum-coated pedicle screws enhance implant integration. Colloids Surf B Biointerfaces 2017;160:22-32.
57. Lotz JC, Hu SS, Chiu DF, et al. Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine (Phila Pa 1976) 1997;22:2716-23.
58. Lonner BS, Auerbach JD, Boachie-Adjei O, et al. Treatment of thoracic scoliosis: are monoaxial thoracic pedicle screws the best form of fixation for correction? Spine (Phila Pa 1976) 2009;34:845-51.
59. Vigneswaran HT, Grabel ZJ, Eberson CP, et al. Surgical treatment of adolescent idiopathic scoliosis in the United States from 1997 to 2012: an analysis of 20,346 patients. J Neurosurg Pediatr 2015;16:322-8.
62. Dalal A, Upasani VV, Bastrom TP, et al. Apical vertebral rotation in adolescent idiopathic scoliosis: comparison of uniplanar and polyaxial pedicle screws. J Spinal Disord Tech 2011;24:251-7.
63. Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine (Phila Pa 1976) 1993;18:2231-8, discussion 2238-9.
64. Ransom N, La Rocca SH, Thalgott J. The case for pedicle fixation of the lumbar spine. Spine (Phila Pa 1976) 1994;19:2702-6.
65. Weinstein JN, Spratt KF, Spengler D, et al. Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine (Phila Pa 1976) 1988;13:1012-8.
67. McKinley TO, McLain RF, Yerby SA, et al. The effect of pedicle morphometry on pedicle screw loading. A synthetic model. Spine (Phila Pa 1976) 1997;22:246-52.
68. Pfeiffer M, Gilbertson LG, Goel VK, et al. Effect of specimen fixation method on pullout tests of pedicle screws. Spine (Phila Pa 1976) 1996;21:1037-44.
69. Soshi S, Shiba R, Kondo H, et al. An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine (Phila Pa 1976) 1991;16:1335-41.
70. Nong L, Zhou D, Xu N, et al. Lamina replacement with titanium plate fixation improves spinal stability after total lumbar laminectomy. Comput Methods Biomech Biomed Engin 2015;18:1753-9.
71. Kamaljit P. inventors; Medtronic, assignee. Spinal plate assembly. United States patent US 8221476B2 2003;July 24.
74. Suda K, Abumi K, Ito M, et al. Local kyphosis reduces surgical outcomes of expansive open-door laminoplasty for cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2003;28:1258-62.
75. Hu W, Shen X, Sun T, et al. Laminar reclosure after single open-door laminoplasty using titanium miniplates versus suture anchors. Orthopedics 2014;37:e71-8.
76. Jacobs WC, van der Gaag NA, Kruyt MC, et al. Total disc replacement for chronic discogenic low back pain: a Cochrane review. Spine (Phila Pa 1976) 2013;38:24-36.
78. Fernstrom U. Arthroplasty with intercorporal endoprothesis in herniated disc and in painful disc. Acta Chir Scand Suppl 1966;357:154-9.
79. Buttner-Janz K, Schellnack K, Zippel H. An alternative treatment strategy in lumbar intervertebral disk damage using an SB Charite modular type intervertebral disk endoprosthesis. Z Orthop Ihre Grenzgeb 1987;125:1-6.
80. Blondel B, Tropiano P, Gaudart J, et al. Clinical results of lumbar total disc arthroplasty in accordance with Modic signs, with a 2-year-minimum follow-up. Spine (Phila Pa 1976) 2011;36:2309-15.
81. Vital JM, Boissiere L. Total disc replacement. Orthop Traumatol Surg Res 2014;100(1 Suppl):S1-14.
82. Zigler JE, Delamarter R, Murrey D, et al. ProDisc-C and anterior cervical discectomy and fusion as surgical treatment for single-level cervical symptomatic degenerative disc disease: five-year results of a Food and Drug Administration study. Spine (Phila Pa 1976) 2013;38:203-9.
84. Ahn PG, Kim KN, Moon SW, et al. Changes in cervical range of motion and sagittal alignment in early and late phases after total disc replacement: radiographic follow-up exceeding 2 years. J Neurosurg Spine 2009;11:688-95.
86. Alvin MD, Mroz TE. The Mobi-C cervical disc for one-level and two-level cervical disc replacement: a review of the literature. Med Devices (Auckl) 2014;7:397-403.
90. Wu ZX, Huang LY, Sang HX, et al. Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech 2011;24:444-50.
91. Li C, Yang M, Xie Y, et al. Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J Orthop Sci 2015;20:475-80.
92. Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma. Spine (Phila Pa 1976) 2016;41:E50-4.
94. et al. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 2017;26:513-8.
95. Whatley BR, Kuo J, Shuai C, et al. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication 2011;3:015004.
96. Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc (2003) 2013;53:136-44.