Review Article

Corresponding Author
Kyoung-Tae Kim
https://orcid.org/0000-0003-4867-6854
Department of Neurosurgery, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Korea
Email: nskimkt7@gmail.com

Co-corresponding Author
Inbo Han
https://orcid.org/0000-0002-0834-9325
Department of Neurosurgery, CHA Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam 13496, Korea
Email: hanib@cha.ac.kr

Received: February 23, 2022
Revised: April 4, 2022
Accepted: May 2, 2022

Curcumin as a Promising Neuroprotective Agent for the Treatment of Spinal Cord Injury: A Review of the Literature

Subum Lee¹, Dae-Chul Cho², Inbo Han³, Kyoung-Tae Kim²

¹Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
²Department of Neurosurgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
³Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea

Curcumin is a polyphenolic chemical derived from the rhizomes of Curcuma longa. It has been used throughout the Indian subcontinent for medicinal purposes, religious events, and regional cuisine. It has various pharmacological benefits owing to its anti-inflammatory and antioxidant properties. Its neuroprotective effects on the brain and peripheral nerves have been demonstrated in several in vivo neuronal tissue studies. Because of these functional properties of curcumin, it is considered to have great potential for use in the treatment of spinal cord injuries (SCIs). Numerous immunopathological and biochemical studies have reported that curcumin can help prevent and alleviate subsequent secondary injuries, such as inflammation, edema, free radical damage, fibrosis, and glial scarring, after a primary SCI. Furthermore, following SCI, curcumin administration resulted in better outcomes of neurological function recovery as per the Basso, Beattie, and Bresnahan locomotor rating scale. However, to date, its utility in treating SCIs has only been reported in laboratories. More studies on its clinical applications are needed in the future for ensuring its bioavailability across the blood-brain barrier and for verifying the safe dose for treating SCIs in humans.

Keywords: Antioxidant, Curcumin, Inflammation, Neuroprotective agent, Recovery of function, Spinal cord injury

INTRODUCTION

Spinal cord injuries (SCIs) have 2 phases—primary and secondary injuries.¹ A primary injury is caused by mechanical insult and structural damage, whereas a secondary injury is a sequence of systemic and local neurochemical and physiological alterations. Subsequent edema, ischemia, inflammation, cytokine production, free radical damage, glial scar formation, apoptosis, and necrosis contribute toward the development of secondary injuries.² A primary injury is immediate and irreversible; in contrast, a secondary injury worsens with time and necessitates therapeutic intervention. Thus, preventing or aggressively treating secondary injuries is the mainstay of care for acute SCIs.³,⁴ Curcumin is a promising therapeutic drug for SCI treatment because it reduces the incidence of secondary injuries. It is a yellow extract derived from Curcuma longa that is frequently used as a spice and food-coloring ingredient in India (Fig. 1). Curcumin has antioxidant and nonsteroidal anti-inflammatory pharmacological properties.⁵,⁶ Preclinical and clinical trials have revealed its various pharmacological activities, including its anti-inflammatory, antibacterial, anticancer, and neuroprotective...
effects on neurodegenerative disorders. Curcumin also has hepatoprotective, nephroprotective, cardioprotective, neuroprotective, hypoglycemic, and antirheumatic activities, and its neuroprotective activity against several neurodegenerative disorders is gaining researchers’ attention. As an anti-inflammatory agent, curcumin suppresses the production of many proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1, IL-8, and monocyte chemoattractant protein 1. In a recent study, curcumin inhibited the hypoxia-induced upregulation of glial fibrillary acidic protein (GFAP) and neurofilament-H following hypoxia and downregulated the expression of proinflammatory cytokines, such as TNF-α and IL-1. It also suppresses glial scar formation and GFAP expression, contributing toward the development of a more favorable environment for neurological recovery (Fig. 2).

This study aimed to consolidate the knowledge essential for spine surgeons and related clinicians to understand how curcumin can alleviate secondary injuries observed in SCIs. Herein, we discuss the basics of neuroprotective effects and accumulate experimental evidence regarding the neuroscience of curcumin.

PHARMACOLOGY

Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] is a complex pharmacophore that has the potential to serve as an antioxidant, chelate metals, and trigger the Michael reaction. Additionally, it is a hydrophobic molecule with a strong affinity toward cellular membranes and consists of 2 ferulic acid residues connected by a methylene bridge. The structure of the molecule is symmetrical. The 3 major components of curcumin molecules are the keto-enol tautomer in the...
middle, flexible α,β-unsaturated β-diketo linker, and terminal o-methoxyphenolic groups (Fig. 3).

The structure of curcumin contains various functional groups (diketo group, carbon-carbon double bonds, and phenyl rings). Thus, curcumin is a unique and strong antioxidant. Structure-activity correlations have shown that the β-diketone (keto-enol) moiety acts as a chelator of cationic metals in protein-binding sites and as a Michael reaction acceptor for nucleophilic compounds that form covalent bonds with curcumin, such as reduced selenocysteine and sulfhydryl. The antioxidant activity of curcumin is dependent on the phenolic hydroxyl group. This group and methylene hydrogen are essential for curcumin’s free radical scavenging activity, which involves electron transfer or H-atom abstraction from reactive oxygen species (ROS) and nitrogen species (Fig. 4).

The wide range of interactions of curcumin might explain why it binds to various proteins. Curcumin affects the function of roughly 100 biological targets in various ways, including the modification of the phosphorylation state of cellular proteins. Curcumin has effects at doses above the micromolar level in general. This low binding affinity has aided various attempts to use a structure-based drug design to improve the efficacy of curcumin.

ANTI-INFLAMMATORY EFFECT

One of the most promising alternatives for primary SCI treatment is an anti-inflammatory multimodal neuroprotection strategy. Spinal cord edema, which is accompanied by acute inflammation and precedes fibrosis, plays a critical role in neurological impairment. This provides a fundamental explanation for the clinical use of corticosteroids in patients with SCIs. Curcumin is an anti-inflammatory molecule that suppresses transcription factors including nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription (STAT) in the upstream signaling pathways of inflammatory mediators such as prostaglandins, cytokines, and chemokines, resulting in the global inhibition of the inflammation network. Given the fundamental nature of NF-κB signaling pathway activation to neuroinflammation and SCI pathophysiology, modulating NF-κB signaling could help minimize inflammation, lessen the severity of secondary injury, and maintain neuronal function.

Curcumin can also directly bind to inflammatory mediators and enzymes involved in downstream inflammatory pathways, such as IL-1 converting enzyme, TNF-α, TNF-α converting enzyme, p38 mitogen-activated protein kinase, myeloid differentiation protein-2, 1-acid glycoprotein, and glycogen synthase kinase-3 beta. Additionally, curcumin suppresses the production of transforming growth factor-beta (TGF-β1, TGF-β2, and sex-determining region Y-box transcription factor 9. It also facilitates the development of a microenvironment appropriate for nerve development. Curcumin suppresses the upregulation of aquaporin 4 and GFAP and the atypical activation of the Janus kinase–STAT signaling pathway associated with SCI. Recent in vivo studies on the anti-inflammatory function of curcumin are summarized in Table 1.

ANTIOXIDANT EFFECT

Numerous experiments have been conducted to determine the antioxidant capabilities of curcumin for SCI treatment. There is a strong correlation between SCI and inflammation-induced free radical formation. Curcumin is a potent antioxidant that
<table>
<thead>
<tr>
<th>Study</th>
<th>Specimen/sample size/ SCI method</th>
<th>Study design (experimental groups)</th>
<th>Curcumin treatment method</th>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zu et al., 2014</td>
<td>Male Sprague-Dawley rats/N = 64/ Striking bar falling (diameter: 3 mm) 5-cm height (150 gcf) on T8 level</td>
<td>Sham/DMSO (n = 16) Sham/Curcumin (n = 16) SCI/DMSO (n = 16) SCI/Curcumin (n = 16)</td>
<td>40 mg/kg Single IP injection 30 min after SCI</td>
<td>Curcumin increased gray-white matter interface, tissue edema/AQP-4 expression, and GFAP/pJAK-STAT expression Moderately improved BBB scores</td>
</tr>
<tr>
<td>Wang et al., 2014</td>
<td>Female BALB/c mice/N = No description/10-g force clip for 3 sec, extradural on T9 level</td>
<td>Sham SCI/DMSO SCI/Curcumin</td>
<td>50 mg/kg Single IP injection Immediately after SCI</td>
<td>Curcumin decreased tissue expression of GFAP and Iba-1 and increased NF-200 Decreased levels of IL-1β, NO, and NF-κB Increased neuromotor scores (Basso mouse scale)</td>
</tr>
<tr>
<td>Lin et al., 2015</td>
<td>Wild-type C57BL/6J/Narl mice/ N = 18/Weight dropped Guide was lifted up to 4 mm to perform a hemitransection</td>
<td>Sham control (n = 6) SCI (n = 6) SCI+Curcumin (n = 6)</td>
<td>40 mg/kg Single IP injection 30 min after SCI</td>
<td>Curcumin attenuated the downregulation of CISD2 in SCI and LPS-treated astrocytes (CISD2 exerts antiapoptotic and anti-inflammatory effects on neural cells)</td>
</tr>
<tr>
<td>Yuan et al., 2015</td>
<td>Female Sprague-Dawley rats/ N = No description/Aneurysm clip (fixed force of 50 g) for 60 sec T9 level</td>
<td>Sham SCI SCI+C-Curcumin 30 SCI+C-Curcumin 100 SCI+C-Curcumin 300 SCI+C-Methylprednisolone</td>
<td>IP injection once per day for 7 days</td>
<td>Curcumin inhibited the expression of proinflammatory cytokines (TNF-α, IL-1β, and NF-κB) Reduced the expression of the intracellular components and GFAP through its anti-inflammatory effects Suppressed reactive gliosis Inhibited the generation of TGF-β1, TGF-β2, and SOX-9 Improved BBB scores</td>
</tr>
<tr>
<td>Ni et al., 2015</td>
<td>Male Sprague-Dawley rats/ N = 48/30-g force extradural compression with a clip for 30 sec on T8–9 level</td>
<td>Sham (n = 16) SCI (n = 16) SCI+C-Curcumin (n = 16)</td>
<td>100 mg/kg IP injections at 15 min after SCI</td>
<td>Curcumin modulated the TLR4/NF-κB inflammatory signaling pathway and significantly ameliorated SCI-induced spinal cord edema and apoptosis. BBB scores significantly increased</td>
</tr>
<tr>
<td>Yuan et al., 2017</td>
<td>Female Sprague-Dawley rats/ N = 280/50-g force dip compression for 60 sec on T9 level</td>
<td>Sham (n = 70) SCI (n = 70) SCI+C-Curcumin (n = 70) SCI+C-DMSO (n = 70)</td>
<td>100 mg/kg IP injections Immediately after surgery and once every 24 hr for 7 days</td>
<td>Curcumin regulated both the NF-κB and SOX-9 signaling pathways. Downregulated the expression of chemokines, MCP-1, RANTES, and CXCL10, released by astrocytes Decreased macrophage and T-cell infiltration</td>
</tr>
<tr>
<td>Ruzicka et al., 2018</td>
<td>Wistar rats/N = 135/Balloon-induced compression using Fogarty catheter on T8 level</td>
<td>Saline (n = 34) Curcumin (n = 27) MSC (n = 28) Curcumin+MSC (n = 26)</td>
<td>High dose once a week (60 mg/kg diluted in olive oil) intrathecally 4 times (immediately after SCI followed up for 3 subsequent weeks), low-dose IP injection daily (6 mg/kg diluted in olive oil) (immediately after SCI and on the 28th day)</td>
<td>The combined therapy facilitated axonal sprouting and modulated the expression of proregenerative factors and production of inflammatory responses. Both curcumin and curcumin combined with MSC therapy improved BBB score and the combined treatment group showed additional improvement in advanced locomotor performance.</td>
</tr>
</tbody>
</table>

(continued)
Table 1. Anti-inflammatory properties of curcumin: list of recent evidentiary studies (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Specimen/sample size/SCI method</th>
<th>Study design (experimental groups)</th>
<th>Curcumin treatment method</th>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruzicka et al., 2018</td>
<td>Wistar rats/N = 131/Balloon-induced compression using Fogarty catheter for 5 min</td>
<td>Behavioral group study: Saline (n = 10) Curcumin (n = 13) EGCG (n = 19) Curcumin+EGCG (n = 9)</td>
<td>Curcumin 6 mg/kg, EGCG 17 mg/kg IP daily Curcumin 60 mg/kg EGCG 17 mg/kg IM weekly for 28 days</td>
<td>Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4, and interleukin-6. All treatments displayed significant behavioral recovery (BBB score) with no obvious synergistic effect after the administration of the combined therapy of curcumin and EGCG</td>
</tr>
<tr>
<td>Lee et al., 2019</td>
<td>Sprague-Dawley rats/N = 35/Clip with 30-g force for 2 min</td>
<td>Sham (n = 32) SCI only (n = 32) SCI+Hyperglycemia (n = 32) SCI+Hyperglycemia+Curcumin (n = 32)</td>
<td>200 mg/kg/day for 8 weeks, IP</td>
<td>SCI+hyperglycemia+curcumin group: SOD activity increased, malondialdehyde and ED-1 macrophage marker levels decreased, IL-6, IL-8, TNF-α, phosphorylated extracellular signal-regulated kinase, phosphorylated JNK, and phosphorylated p38 levels decreased, Better BBB score</td>
</tr>
<tr>
<td>Yardim et al., 2021</td>
<td>Male Sprague-Dawley rats/N = 35/PTX-induced SCI</td>
<td>Control (n = 7) Curcumin (n = 7) PTX (n = 7) PTX+Curcumin 100 (n = 7) PTX+Curcumin 200 (n = 7)</td>
<td>100 mg/kg or 200 mg/kg Oral daily for 10 days</td>
<td>Curcumin reduced mRNA expression levels of NF-κB, TNF-α, IL-6, iNOS, and GFAP and increased the levels of Nrf2, HO-1, and NQO1. Curcumin suppressed the activation of apoptotic and autophagic pathways by increasing Bcl-2 and Bcl-xL and decreasing p53, caspase-3, Apaf-1, LC3A, LC3B, and beclin-1 mRNA expression levels</td>
</tr>
</tbody>
</table>

SCI, spinal cord injury; DMSO, dimethyl sulfoxide; AQP-4, aquaporin 4; GFAP, glial fibrillary acidic protein; pJAK-STAT, phosphorylated Janus kinase-signal transducer and activator of transcription; BBB, Basso, Beattie, Bresnahan; BALB, Bagg albino; IP, intraperitoneal; NF-200, neurofilament-200; IL, interleukin; NO, nitric oxide; NF-κB, nuclear factor kappa B; LPS, lipopolysaccharide; TNF, tumor necrosis factor; TGF, transforming growth factor; SOX-9, sex-determining region Y-box transcription factor 9; MCP-1, monocyte chemoattractant protein-1; RANTES, regulated upon activation, normal T cell expressed and presumably secreted; CXCL10, C-X-C motif chemokine ligand 10; MSC, mesenchymal stem cells; EGCG, epigallocatechin gallate; IM, intramuscular; iNOS, inducible nitric oxide synthase; Nrf2, nuclear erythroid 2-related factor 2; HO-1, hemeoxygenase 1; NQO1, NAD(P)H:quinone oxidoreductase 1; PTX, paclitaxel; LC3A, light chain 3 A; LC3B, light chain 3 B.
is reported to be superior to vitamin E, resveratrol, and other commonly used antioxidants. Curcumin interacts with ROS directly and also acts as an activator of antioxidant signaling systems, making its effects more comprehensive and long lasting. Curcumin can also neutralize free radicals via electron transfer and/or H-atom donation. The antioxidant ability of curcumin is influenced by 3 distinct functional dissociation groups and a β-diketone site.

Curcumin binds to lipid radicals in cell membranes and converts them into phenoxyl radicals. Because phenoxy is more polar than curcumin, it diffuses to the membrane surface, where it can be repaired by any water-soluble antioxidant such as ascorbic acid. Thus, curcumin can protect cell membranes against oxidative damage by acting as a lipid radical scavenger. It has the potential to enhance the activity of antioxidant enzymes, such as plasma catalase, erythrocyte superoxide dismutase (SOD), and plasma glutathione peroxidase. Furthermore, malondialdehyde (MDA), which is the end product of lipid peroxidation, is a reliable marker of oxidative stress-mediated lipid peroxidation. Curcumin decreased MDA based on a fixed-effects model (n = 56; pooled mean difference [MD] = -1.00; 95% confidence interval [CI], -1.59 to -0.42; p = 0.00008) in a meta-analysis of 4 studies on MDA levels.

Additionally, curcumin could stimulate antioxidant protection genes via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. It increases intracellular antioxidant defense responses by activating the Nrf2/antioxidant response element pathway, which results in the development of several antioxidants and detoxification and cytoprotective proteins. Recently, Ni et al. showed that SCI caused a considerable increase in la-

Table 2. Antioxidant property of curcumin: list of recent evidentiary studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Specimen/sample size/SCI method</th>
<th>Study design (experimental groups)</th>
<th>Curcumin treatment method</th>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akar et al., 2017</td>
<td>Male Wistar rats/ N = 40/ Spinal cord ischemia induced by clamping the aorta</td>
<td>Sham (n = 10) / Ischemia–reperfusion (n = 10) / Curcumin (n = 10) / Solvent (n = 10)</td>
<td>100 mg/kg, IP at 30 min before ischemia // Dissolved in 5 N NaOH</td>
<td>Decreased MDA levels in the spinal cord // Increased SOD and GPx levels caused by curcumin // Neurological outcome scores were significantly better when compared with those of the IR group.</td>
</tr>
<tr>
<td>Xi et al., 2019</td>
<td>Sprague-Dawley rats/ N = 24/A hammer was dropped on T8 level</td>
<td>Sham/control (n = 8) / SCI (n = 8) / Tetrahydrocurcumin treatment (n = 8)</td>
<td>80 mg/kg/day, IP // Tetrahydrocurcumin for 2 weeks</td>
<td>Oxidative stress and apoptosis (capase-3 activity and B cell lymphoma 2-associated X protein levels) were suppressed // Tetrahydrocurcumin inhibits oxidative stress response by regulating FOXO4 in SCI model rats // Tetrahydrocurcumin increased the BBB scores</td>
</tr>
<tr>
<td>Daverey et al., 2020</td>
<td>Male Wistar rats/ N = 18/30-mm spinal cord section/ Hypoxia</td>
<td>Sham / Hypoxia / Hypoxia+Curcumin / Hypoxia / Hypoxia+Curcumin / Hypoxia+BAY11-7082</td>
<td>One hour incubation // 50 μM curcumin // 95% N2 and 5% CO2</td>
<td>Curcumin inhibited hypoxia-induced HIF1-α expression and tissue damage by improving the morphology of astrocytes and remarkably reducing vacuolation. // It inhibited the hypoxia-induced upregulation of GFAP and neurofilament-H (NF-H) after hypoxia and downregulated the expression of pro-inflammatory cytokines such as TNF-α and IL-1. // Curcumin exerted its neuroprotective effect through cross-talk between the NF-κB and Nrf2 signaling pathways.</td>
</tr>
<tr>
<td>Daverey and Agrawal, 2020</td>
<td>Human astrocytes / Male Wistar rats/ N = 21/30-mm spinal cord section/ Hypoxia</td>
<td>Human astrocytes / Sham / Hypoxia / Hypoxia+Curcumin / Hypoxia+Riluzole / Hypoxia+Riluzole+Curcumin</td>
<td>Human astrocytes: Riluzole (1 μM) // Curcumin (1 μM) // Rat SCI model (white matter injury) // Riluzole (10 μM) // Curcumin (50 μM)</td>
<td>Riluzole protects white matter injury by the activation of Nrf2/HO-1 and caspase 9. // Curcumin’s neuroprotective effect is mediated through the inhibition of HIF-1α, GFAP, NF-H, and caspase 9. // Curcumin is more effective than riluzole in reducing GFAP and NF-H injury.</td>
</tr>
</tbody>
</table>

SCI, spinal cord injury; IR, intraperitoneal; MDA, Malondialdehyde; SOD, serum superoxide dismutase; IR, ischemia–reperfusion; FOXO4, forkhead box protein O4; BBB, Basso, Beattie, Bresnahan; HIF1-α, Hypoxia inducible factor 1-α; GFAP, glial fibrillary acidic protein; TNF, tumor necrosis factor; IL, interleukin; Nrf2, nuclear erythroid 2-related factor 2; HO-1, hemeoxygenase 1; NF-H, neurofilament protein-H.
bile Zn and inflammatory cytokines in an injured rat’s spinal cord, and curcumin decreased the accumulation of labile Zn. Zn is important in decreasing oxidative stress and generating inflammatory cytokines. Recent studies that demonstrate the antioxidant function of curcumin are summarized in Table 2.

STEM CELL PROLIFERATION

While research on stem cells for SCI treatment is ongoing, there still exist significant barriers in achieving excellent therapeutic results. It is critical to promote neural stem cell (NSC) proliferation for treating SCI, and several investigations have reported the contribution of curcumin to this process. An improved therapeutic effect can be achieved by modifying stem cell proliferation and differentiation and reducing the inflammatory microenvironment in injured regions.

Curcumin enhances the functional recovery of SCIs when combined with NSC or mesenchymal stem cell (MSC) therapy. In a study by Ormond et al., the combination of curcumin and NSC therapy led to a significant recovery of severe SCIs in vivo, which was evidenced by better functional locomotor recovery, body weight, and soleus muscle mass. Wanjing et al. confirmed that in combination with MSC therapy, curcumin suppressed human umbilical cord-derived MSC (hUC-MSC) apoptosis via the ERK1/2 signaling pathway, and the combined curcumin and hUC-MSC therapy improved the motor function of rats with SCIs. A study by Bonilla et al. evaluated a combination therapy comprising human NSCs derived from induced pluripotent stem cells (iPSC-NSCs), human MSCs, and a pH-responsive polyacetal–curcumin nanoconjugate (PA–C) that allows the sustained release of curcumin. The combination of stem cell transplantation and PA–C therapy exerted higher neuroprotective effects compared with individual therapies. Representative studies showing that curcumin enhances stem cell proliferation are summarized in Table 3.

NEUROLOGICAL FUNCTIONAL IMPROVEMENT

Neurological function was found to be improved by curcumin in a random-effects model of a comprehensive meta-analysis. The magnitude of the effect, as measured by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, was significantly increased when the curcumin dosage was elevated (4 trials; total, 132 rats; pooled MD = 3.09; 95% CI, 3.40–4.45; p = 0.04). Several studies on functional recovery had the advantage of adopting a uniform scale (BBB score) for interstudy comparisons, making aggregated results reliable. In an animal trial, 60 Wistar rats were randomly assigned to receive either curcumin therapy (30 rats) or placebo (30 rats). Curcumin therapy (immediately applied to the injured spinal cord surface and then administered intraperitoneally daily) resulted in behavioral recovery within the first week following SCI, as shown by better BBB and plantar scores for sensory function. This functional improvement was induced by the anti-inflammatory effects of curcumin. In another animal study investigating antioxidative characteristics and functional recovery, the curcumin-treated group demonstrated enhanced locomotor scores (BBB scores), increased SOD levels, reduced MDA levels, and reduced macrophage markers following SCI.

One study found that curcumin was more effective than methylprednisolone, which is frequently used in clinical practice to treat secondary injury in patients with SCIs 2 weeks after primary injury based on BBB scores. The study concluded that curcumin has a greater therapeutic potential than methylprednisolone, showing a longer duration of action in SCIs. Thus, in vivo studies on rats and their BBB scores offer substantial evidence of the efficacy of curcumin in causing functional recovery after SCIs. In many in vivo studies, neurological function was assessed using BBB scores (Tables 1–3). Other studies that evaluated functional recovery using BBB scores are summarized in Table 4.

OBSTACLES AND FUTURE DIRECTION

Although curcumin has been reported to be a promising neuroprotective agent, its practical applications are limited owing to a number of issues. Curcumin has limited bioavailability because of its low water solubility, poor absorption, rapid metabolism, and fast elimination. It cannot cross the blood-brain barrier, making it unsuitable for use in treating central nervous system injuries, including SCIs. Toxicity is also an issue. Curcumin induces damage to the DNA both in vitro and in vivo. Curcumin acts as a dose-dependent antioxidant to inhibit ROS as well as a pro-oxidant to produce ROS. Superoxide anion and hydrogen peroxide are the 2 types of ROS that may play an important role in carcinogenesis. At high doses, curcumin can react with the thiol groups of cysteine residues, causing DNA damage or p53 inactivation.

However, these limitations are being addressed by encapsulating curcumin into nanocarriers via various methods is an appropriate
Table 3. Recent studies showing proliferation enhancement through the combination of curcumin and stem cells

<table>
<thead>
<tr>
<th>Study</th>
<th>Stem cell types and specimen/SCI method</th>
<th>Study design (experimental groups)</th>
<th>Curcumin treatment method</th>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Son et al., 2014</td>
<td>Neural progenitor cell (NPC) from the spinal cord of Sprague-Dawley rats</td>
<td>Examine cellular proliferation (MTS assay) in control (no curcumin) and curcumin groups at 6 different dose levels</td>
<td>In culture medium at 0.1, 0.5, 1, 10, 20, and 50 μM</td>
<td>Lower dosage (0.1, 0.5, 1 μM) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Curcumin stimulates the proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 proteins.</td>
</tr>
<tr>
<td>Requejo-Aguilar et al., 2017</td>
<td>Ependymal stem/progenitor cells of the spinal cord (EpSPC) of Sprague-Dawley rats</td>
<td>Intrathecal administration PA–curcumin–Cy5.5 (10 μM) (combination treatment: epSPCs and a pH-responsive polymer–curcumin conjugate)</td>
<td>PA–C enhances neuroprotection, increases axonal growth</td>
<td>Also enhances functional recovery in a rodent model of chronic SCI.</td>
</tr>
<tr>
<td>Bang et al., 2018</td>
<td>Neural stem/progenitor cells derived from Sprague-Dawley rats N = 60/Clip with a closing force of 30 g & a 2-min compression</td>
<td>Implanting indwelling intrathecal catheters/ A concentration of 1 μmol/L for curcumin</td>
<td>SCI-Curcumin group: The co-immunoreactivity of nestin/BrdU was higher The GFAP immunoreactivity and lesion cavity was lower The BBB score was better (up to 14 days)</td>
<td></td>
</tr>
<tr>
<td>Wanjian et al., 2020</td>
<td>hUC-MSC/Female Sprague-Dawley rats/N = 180/50-g aneurysm clip compression on for 60 sec on T9 level</td>
<td>Sham (n = 20) SCI-Curcin (n = 20) SCI-Veicle (n = 20)</td>
<td>Curcumin suppressed hUC-MSC apoptosis through the ERK1/2 signaling pathway</td>
<td>The combination of curcumin and hUC-MSC therapies improved motor function after SCI in rats.</td>
</tr>
<tr>
<td>Bonilla et al., 2021</td>
<td>Induced pluripotent stem cells (iPSC-NSC) & Human MSC Female Sprague-Dawley rats/200 kdyne contusion on T8 level iPSC-NSC (n = 8)</td>
<td>Control (n = 16) MSC (n = 11) iPSC-NSC+MSC (n = 11) PA-C (n = 6) iPSC-NSC+MSC+PA-C (n = 7)</td>
<td>A pH-responsive polycationic-curcumin nanoconjugate (PA–C) delivery into the intrathecal space in contusive SCI with stem cell transplantation.</td>
<td>PA–C-treated or PA–C and iPSC-NSC + MSC-treated groups: Smaller scars, whereas PA–C and iPSC-NSC + MSC therapy induced the preservation of β-III tubulin-positive axons. iPSC-NSC + MSC transplantation fostered the preservation of motor-neurons and myelinated tracts, whereas PA–C therapy polarized microglia into an anti-inflammatory phenotype.</td>
</tr>
<tr>
<td>Elkhenany et al., 2021</td>
<td>Human induced neural progenitor cells (iNPC) Female Sprague-Dawley rats/200 kdyne contusion on T8 level</td>
<td>HA_PM_iNPC (non SCI) (n = 3) HA_PPY_PM_iNPC (non SCI) (n = 3) HA_PM_CURC (n = 3) HA_PPY_PM_CURC (n = 3) HA_PM_iNPC (n = 3) HA_PPY_PM_iNPC (n = 3) HA_PM_CURC_iNPC (n = 3) HA_PPY_PM_CURC_iNPC (n = 3)</td>
<td>PM-embedded curcumin</td>
<td>PM-embedded iNPCs and CURC with PPY fibers supported a significant increase in neuropreservation (as measured by higher βIII tubulin staining of neuronal fibers) and decrease in the injured area (as measured by the lack of GFAP staining).</td>
</tr>
</tbody>
</table>

SCI, spinal cord injury; SC-NPC, spinal cord neural progenitor cell; MAP, mitogen-activated protein; p-ERK, phospho-extracellular signal-regulated kinase; PA, polyacetal; PA-C polyacetal-curcumin; epSPC, ependymal stem/progenitor cells of the spinal cord; GFAP, glial fibrillary acidic protein; BBB, Basso, Beattie, Bresnahan; hUC-MSC, umbilical cord mesenchymal stem cell; IP, intraperitoneal; DMSO, Dimethyl sulfoxide; ERK, extracellular signal-regulated kinase; CURC, curcumin.
The potential of curcumin in spinal cord injury is a topic of considerable interest, with research shifting focus on determining the most beneficial curcumin treatment methods. Curcumin treatment can improve behavioral recovery (BBB scores and plan tar sensory performance scores) within the first week following SCI (by anti-inflammatory action). The study of curcumin’s role in spinal cord injury has been significant, with many studies examining its effects on neurological function and recovery.

Curcumin Treatment Method

- **SCI-Curcumin group:** Improvement in the BBB score 7–14 days after surgery (by anti-inflammatory action).
- **SCI group:** Higher BBB scores 7–14 days after surgery (by anti-inflammatory action).

Study Design

- **Study:** Other studies showing the property of curcumin in promoting neurological functional recovery as evaluated by measuring the BBB score.

Summary of Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Curcumin treatment method</th>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al.</td>
<td>200 mg/kg IP daily for 7 days</td>
<td>Improved behavior and functional recovery.</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>200 mg/kg IP daily for 7 days</td>
<td>Improved behavior and functional recovery.</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>200 mg/kg IP daily for 56 days</td>
<td>Improved behavior and functional recovery.</td>
</tr>
</tbody>
</table>

Potential of Curcumin in Spinal Cord Injury

Curcumin, an anti-inflammatory agent, has been shown to improve behavioral recovery in spinal cord injury (SCI) models. The role of curcumin in promoting neurological functional recovery has been evaluated by measuring the BBB score. Curcumin-treated groups showed improved BBB scores compared to control groups, indicating its potential as a therapeutic agent for SCI.

Limitations

The use of curcumin in SCI repair is promising, but further research is needed to determine the most beneficial timing and duration of administration. The use of high-dose curcumin administration is recommended, and continuous or intermittent curcumin therapy has been administered in most animal investigations throughout the acute phase, which occurs within 24 hours of the primary injury, and the chronic phase, which occurs after the primary injury. Therefore, future research should focus on determining the most beneficial timing and duration of curcumin administration.

Conclusion

Curcumin has shown promise in promoting neurological functional recovery following SCI. Further translational research is needed to determine an effective administration method that enhances its bioavailability and improves its delivery to the site of injury. The potential of curcumin in SCI repair is promising, but more research is needed to determine its optimal use.

Table 4. Other studies showing the property of curcumin in promoting neurological functional recovery as evaluated by measuring the BBB score

<table>
<thead>
<tr>
<th>Study</th>
<th>Curcumin treatment method</th>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al.</td>
<td>200 mg/kg IP daily for 7 days</td>
<td>Improved behavior and functional recovery.</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>200 mg/kg IP daily for 7 days</td>
<td>Improved behavior and functional recovery.</td>
</tr>
<tr>
<td>Luo et al.</td>
<td>200 mg/kg IP daily for 56 days</td>
<td>Improved behavior and functional recovery.</td>
</tr>
</tbody>
</table>

BBB score: Basso, Beattie, Bresnahan; **SCI:** spinal cord injury; **ED-1:** antibody marker for activated macrophages; **MMP:** matrix metalloproteinase; **NF-B:** tumor necrosis factor-alpha; **RANTES:** regulated upon activation, normal T cell expressed and presumably secreted; **MP:** methylprednisolone; **IP:** intraperitoneal; **GFAP:** glial fibrillary acidic protein.
limitation of this paper. For example, we did not investigate the bioactivity of curcumin in astrocytes.²⁶ It also lacks detailed information on several signaling pathways that are regulated by curcumin, including the Nrf2/heme oxygenase 1 pathway,³⁰ the mammalian target of rapamycin,²⁷ and TGF-β–SOX9 pathway.²⁸ As a result, there are constraints in providing cutting-edge knowledge regarding curcumin therapy. However, the goal of this review paper is to provide clinicians with basic and comprehensive information regarding the role of curcumin in SCI treatment. The authors believe that this review paper would prove to be helpful to neurospinal clinicians.

CONCLUSION

Curcumin is a neuroprotective polyphenolic compound that has benefits such as pluripotency, oral safety, long usage history, and low cost. Several animal experiments have shown that curcumin can minimize secondary injury following primary SCIs through its anti-inflammatory, antioxidant, and stem cell mobilization properties. Curcumin is an influential therapeutic agent that can potentially treat catastrophic secondary injuries in the spinal cord, including inflammation, edema, free radical injury, fibrosis, and glial scar formation. It can enhance neurological function in rats, as measured using the BBB locomotor rating scale. Studies exploring ways to overcome its limited bioavailability have recently begun. More translational investigations on curcumin are necessary to facilitate its use in clinical settings.

NOTES

Conflict of Interest: The authors have nothing to disclose.

Funding/Support: This study received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author Contribution: Conceptualization: IH, KK; Data curation: SL; Methodology: DC, KK; Project administration: IH, KK; Visualization: SL; Writing - original draft: SL; Writing - review & editing: DC, IH, KK.

ORCID

Subum Lee: 0000-0003-4732-8137
Dae-Chul Cho: 0000-0002-2899-8015
Inbo Han: 0000-0002-0834-9325
Kyoung-Tae Kim: 0000-0003-4867-6854

REFERENCES

