Thoracolumbar Spine Fractures
- WFNS Spine Committee Recommendations -

Neurospine

Volume 18 • Number 4 • December 2021

Mendenhall Glacier Abyss (2021) by Jacob Buchowski
Aims and Scope

Neurospine provides spine clinicians and researchers with peer-reviewed articles on basic and clinical investigation of spine and spinal cord to enhance patient management, education, clinical or experimental research, and professionalism. The journal will consider submissions in areas on craniocervical to lumbosacral spine including the followings: neuroscience and pain research, bone and mineral research, disc and joint research, bio and industrial technology, pathophysiology, risk factors, symptomatology, imaging, treatment, rehabilitation of spine, spinal cord and peripheral nerve diseases. Specifically, basic and technology researches include the most influential research papers from all fields of science and technology, revolutionizing what physicians and researchers practicing the art of spinal neurosurgery worldwide know. Thus, we welcome valuable basic and translational technology research articles to introduce cutting-edge research of fundamental sciences and technology in clinical spinal neurosurgery. Clinical or basic research articles, review articles, case reports, technical notes, and letters to the editor written in English will be accepted.

About the Journal

Neurospine (ISO abbreviated journal name, Neurospine), the official journal of World federation of Neurosurgical Societies Spine Committee, is an international peer-reviewed open-access journal which published quarterly (last day of March, June, September, and December). It was first published in March 31, 2004 with Volume 1 and Number 1 with the name “Korean Journal of Spine,” and renamed as “Neurospine” in March issue, 2018.

Abstracted/Indexed In

Neurospine is indexed/covered by PubMed, PubMed Central, KoreaMed, KoMCI, EBSCO host and Google Scholar.

Subscription Information

The Korean Spinal Neurosurgery Society will send Neurospine to certain relevant individuals and institutions free of charge. Full text is complimentary and available at http://www.e-neurospine.org. To order a subscription to Neurospine, please contact our editorial office.

Open Access

Neurospine is an open access peer-reviewed journal and launched in March 31, 2004. All articles published in Neurospine will be immediately and permanently free for everyone to read and download. All articles are distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Contact Neurospine

Publisher Korean Spinal Neurosurgery Society
Published by the Korean Spinal Neurosurgery Society

Tel: +82-2-585-5455 • Fax: +82-2-523-6812 • E-mail: ksns1987@gmail.com

Editorial Office
Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine,
50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
Tel: +82-2-2228-2172 • Fax: +82-2-313-5970 • E-mail: theneurospine@gmail.com

Printed by Academya Publishing Co.
Room 2003, Daerung Techno Town 15-Cha, 401 Simin-daero, Dongan-gu, Anyang 14057, Korea
Tel: +82-31-389-8811 • Fax: +82-31-389-8817 • E-mail: journal@academya.co.kr • http://www.academya.co.kr

This work was supported by the Korean Federation of Science and Technology Societies (KOFST) grant funded by the Korean government.

© Copyright 2021 by the Korean Spinal Neurosurgery Society. All rights reserved.
Editorial Board

Editor-in-Chief
Yoon Ha Yonsei University, Korea

Editors-Deputy
Wen-Cheng Huang Taipei Veterans General Hospital, Taiwan
Masakazu Takayasu Aichi Medical University Nagakute, Japan

Associate Editor
Seung-Jae Hyun Seoul National University, Korea

Advisory Board Members
John R. Adler Stanford University, USA
Christopher P. Ames University of California, San Francisco, USA
Henrich Cheng Taipei Veterans General Hospital, Taiwan
Dosang Cho Ewha Womans University, Korea
Yong Eun Cho Yonsei University, Korea
Michael G. Fehlings University of Toronto, Canada
Jean-Charles Le Huec Bordeaux University Hospital, France
Kenneth MC Cheung The University of Hong Kong, Hong Kong
Phyo Kim Dokkyo Medical University, Japan

Editors
Howard An Rush University, USA
Xiaoming Che Fudan University, China
Chien-Min Chen Changhua Christian Hospital, Taiwan
Shin-Jau Chen Mackay Memorial Hospital, Taiwan
Samuel K. Cho Iahn School of Medicine at Mount Sinai, USA
Woojin Cho Albert Einstein College of Medicine, USA
Chungkeor Chough Catholic University, Korea
Benny T. Dahl Texas Children’s Hospital & Baylor College of Medicine, USA
Toshiki Endo Kohnan Hospital, Japan
In Bo Han CHA University, Korea
James Harrop Thomas Jefferson University, USA
Oliver Hausmann Hirlanden Klinik St. Anna Lucerne, Swiss
Jae Tack Hong Catholic University, Korea
Daniel Jin Hoh University of Florida, USA
Soo Bin Im Soon Chun Hyang University, Korea
Toshitoko Imi Tohoku University, Japan
Feng Zeng Jian Capital Medical University, China
Da-Tong Ju Tri-Service General Hospital, Taiwan
Takashi Kaito Osaka University, Japan
Hyun Sung Kim Nanoori Hospital Gangnam, Korea
Joo Han Kim Korea University, Korea
Kee D. Kim University of California Davis, USA
Kyongsong Kim Nippon Medical School Chiba Hokusoh Hospital, Japan
Se-Hoon Kim Korea University, Korea
Deniz Konya Bahcesehir University Faculty of Medicine, Turkey
Vit Kotechaenurak Queen Saovabha Divanjanan Hospital, Thailand
Ryu Kurokawa Dokkyo Medical University, Japan
Dar-Ming Lai National Taiwan University, Taiwan
Chang-Hyun Lee Seoul National University, Korea
E-Jian Lee National Cheng Kung University Hospital, Taiwan
Jung Kil Lee Chonnam National University, Korea
Sun-Ho Lee Sungkyunkwan University, Korea
Chien-Min Lin TMU School of Medicine, Taiwan
Pranab Vasant Lokhande SKN Medical College and University Hospital, India
Kang Lu E-Da Hospital, Taiwan
Masayuki Miyagi Kitasato University, Japan
Masaki Mizuno Meiji University School of Medicine, Japan
James M. Mok DuPage Medical Group, USA
Seiji Ohtori Chiba University, Japan
Jutty Parthiban Kovai Medical Center and Hospital, India
Daniel K. Resnick University of Wisconsin, USA
Koichi Sairyo Tokushima University, Japan
Daikuke Sakai Tokai University, Japan
Nobuyuki Shimokawa Tsukazaki Hospital, Japan
Kern Singh Rush University Medical Center, USA
Justin S. Smith University of Virginia, USA
Shih-Huang Tai National Cheng Kung University Hospital, Taiwan
Koshibyuki Takakashi Fujidea Sei Memorial Hospital, Japan
Keisuke Takai Tokyo Metropolitan Neurological Hospital, Japan
Toshihiro Takami Osaka City University Graduate School of Medicine, Japan
Lee Tan University of California, USA
Fan Tao Capital Medical University, China
Zafer Orkun Toktas Bahcesehir University, Turkey
Tsung-Hsi Tu Taipei Veterans General Hospital, Taiwan
Kota Watanabe Keio University, Japan
Jau-Ching Wu National Yang-Ming University, Taiwan
Karina Wurts-Kozak Institute for Biomechanics, Swiss
Satoshi Yamaguchi Hiroshima University, Japan
Seung Hwan Yoon Inha University, Korea
Takashi Yurube Kobe University, Japan
Social Media Editors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junseok Bae</td>
<td>Wooridal Spine Hospital, Seoul, Korea</td>
</tr>
<tr>
<td>Peng-Yuan Chang</td>
<td>Taipei Veterans General Hospital, Taipei, Taiwan</td>
</tr>
<tr>
<td>Toshiki Endo</td>
<td>Tohoku Univ, Tohoku, Japan</td>
</tr>
<tr>
<td>John Shin</td>
<td>Harvard Univ, Boston, USA</td>
</tr>
</tbody>
</table>

Assistant Editors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas J. Buell</td>
<td>Duke University, USA</td>
</tr>
<tr>
<td>Timo Michael Ecker</td>
<td>Lausanne University, Switzerland</td>
</tr>
<tr>
<td>Sang Hyun Han</td>
<td>Hankook Hospital, Korea</td>
</tr>
<tr>
<td>Allen Ho</td>
<td>Stanford University, USA</td>
</tr>
<tr>
<td>Moo Sung Kang</td>
<td>H PLUS Yangji Hospital</td>
</tr>
<tr>
<td>Bum-Joon Kim</td>
<td>Korea University, Korea</td>
</tr>
<tr>
<td>Sandro M. Krieg</td>
<td>Technical University of Munich, Germany</td>
</tr>
<tr>
<td>Byoung Hun Lee</td>
<td>Hallym University, Korea</td>
</tr>
<tr>
<td>Dal Sung Ryu</td>
<td>Inha University, Korea</td>
</tr>
<tr>
<td>Michael Schwake</td>
<td>University Hospital Münster, Germany</td>
</tr>
<tr>
<td>Victor Egon Staartjes</td>
<td>University of Zurich, Switzerland</td>
</tr>
<tr>
<td>Martin N. Stienen</td>
<td>University Hospital Zurich, Switzerland</td>
</tr>
<tr>
<td>Corinna C. Zygourakis</td>
<td>Stanford University, USA</td>
</tr>
</tbody>
</table>

Managing Editors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dae-Chul Cho</td>
<td>Kyungpook National University, Korea</td>
</tr>
<tr>
<td>Man Kyu Choi</td>
<td>Kyung Hee University, Korea</td>
</tr>
<tr>
<td>In Ho Han</td>
<td>Pusan National University, Korea</td>
</tr>
<tr>
<td>Dong Hwa Heo</td>
<td>Bumin Hospital, Seoul</td>
</tr>
<tr>
<td>Jong-myung Jung</td>
<td>Gachon University Gil Medical Center, Korea</td>
</tr>
<tr>
<td>Chi Heon Kim</td>
<td>Seoul National University, Korea</td>
</tr>
<tr>
<td>Jin-Sung Kim</td>
<td>Catholic University, Korea</td>
</tr>
<tr>
<td>Kyung Hyun Kim</td>
<td>Yonsei University, Korea</td>
</tr>
<tr>
<td>Sung Bum Kim</td>
<td>Kyung-Hee University, Korea</td>
</tr>
<tr>
<td>Young Jin Kim</td>
<td>Dankook University, Korea</td>
</tr>
<tr>
<td>Jae Keun Oh</td>
<td>Hallym University, Korea</td>
</tr>
<tr>
<td>Hyung Ki Park</td>
<td>Soonchunhyang University, Korea</td>
</tr>
<tr>
<td>Jong Hwa Park</td>
<td>HwaseongYul Hospital, Korea</td>
</tr>
<tr>
<td>Dongwuk Son</td>
<td>Pusan National University Yangsan Hospital, Korea</td>
</tr>
</tbody>
</table>

Ethics Editor

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Huh</td>
<td>Hallym University, Korea</td>
</tr>
</tbody>
</table>

Manuscript Editor

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hwan Tae Ahn</td>
<td>JTS, Korea</td>
</tr>
</tbody>
</table>
Contents

Introduction

651 Introduction to Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations
Salman Sharif, Mehmet Zileli

Editorial

654 Looking for the Optimum Treatment of Thoracolumbar Spine Fractures
Se-Hoon Kim

Review Articles

656 Classification and Radiological Diagnosis of Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations
Abdul Hafid Bajamal, Khrisna Rangga Permana, Muhammad Faris, Mehmet Zileli, Nikolay A. Peev

667 Surgical Techniques for Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations
Salman Sharif, Yousuf Shaikh, Onur Yaman, Mehmet Zileli

681 Kyphosis After Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations
Onur Yaman, Mehmet Zileli, Salim Şentürk, Kernal Paksoy, Salman Sharif

693 Clinical and Radiological Factors Affecting Thoracolumbar Fractures Outcome: WFNS Spine Committee Recommendations
Francesco Costa, Salman Sharif, Abdul Hafid Bajamal, Yousuf Shaikh, Carla D. Anania, Mehmet Zileli

704 Incidence and Epidemiology of Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations
Mehmet Zileli, Salman Sharif, Maurizio Fornari

713 Indications for Nonsurgical Treatment of Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations
Nikolay Peev, Mehmet Zileli, Salman Sharif, Shahswar Arif, Zarina Brady

725 Demographic Predictors of Treatment and Complications for Spinal Disorders: Part 2, Lumbar Spine Trauma
Omar Al Jammal, Julian Gendreau, Bejan Alvandi, Neal A. Patel, Nolan J. Brown, Shane Shahrestani, Brian V. Lien, Arash Delavari, Katelyn Tran, Ronald Sahyouni, Luis Daniel Diaz-Aguilar, Kevin Gilbert, Martin H. Pham

733 Regional Anesthesia for Lumbar Spine Surgery: Can It Be a Standard in the Future?
Jae-Koo Lee, Jong Hwa Park, Seung-Jae Hyun, Daniel Hodel, Oliver N. Hausmann
Original Articles

741 Clinical and Radiological Clues of Traumatic Craniocervical Junction Injuries Requiring Occipitocervical Fusion to Early Diagnosis
Daimon Shiraishi, Yusuke Nishimura, Isaac Aguirre-Carreno, Masahito Hara, Satoshi Yoshikawa, Kaoru Eguchi, Yoshitaka Nagashima, Hiroshi Ito, Shoichi Haimoto, Yu Yamamoto, Howard J. Ginsberg, Masakazu Takayasu, Ryuta Saito

749 Surgical and Functional Outcomes of Expansive Open-Door Laminoplasty for Patients With Mild Kyphotic Cervical Alignment
Narihito Nagoshi, Satoshi Nori, Osahiko Tsuji, Satoshi Suzuki, Eijiro Okada, Mitsuru Yagi, Masaya Nakamura, Morio Matsumoto, Kota Watanabe

Editorial

758 Commentary on “Surgical and Functional Outcomes of Expansive Open-Door Laminoplasty for Patients With Mild Kyphotic Cervical Alignment”
Dongwuk Son

Original Articles

760 Five-Repetition Sit-to-Stand Test Performance in Healthy Individuals: Reference Values and Predictors From 2 Prospective Cohorts
Anita M. Klukowska, Victor E. Staartjes, W. Peter Vandertop, Marc L. Schroder

770 Vertebral Artery Variations at the Craniovertebral Junction in “Sandwich” Atlantoaxial Dislocation Patients
Yinglun Tian, Nanfang Xu, Ming Yan, Jingguo Chen, Kan-Lin Hung, Xiangyu Hou, Shenglin Wang, Weishi Li

778 Complications of Posterior Fusion for Atlantoaxial Instability in Children With Down Syndrome
Yoshiki Takeoka, Kenichiro Katatani, Hiroshi Miyamoto, Tepppei Suzuki, Takashi Yurube, Izumi Komoto, Masao Ryu, Shinichi Satsuma, Koki Uno

786 Spinal Fractures in Ankylosing Spondylitis: Patterns, Management, and Complications in the United States – Analysis of Latest Nationwide Inpatient Sample Data
Sandeep Kandregula, Harjus S. Birk, Amey Savardekar, William Chris Newman, Robbie Beyl, Krystle Trosclair, Bharat Guthikonda, Anthony Sin

798 Cross-Cultural Adaptation and Psychometric Validation of the Dutch Version of the Core Outcome Measures Index for the Neck in Patients Undergoing Surgery for Degenerative Disease of the Cervical Spine
Pravesh S. Gadjridji, Timothy C. Chin-See-Chong, Daphne Donk, Paul Depeauw, Maurits W. van Tulder, Biswadip S. Harhangi

806 Risk Factors for Pulmonary Cement Embolism (PCE) After Polymethylmethacrylate Augmentation: Analysis of 32 PCE Cases
Huizhi Gao, Huasheng Huang, Yang Shao, Qiuli Qin, De Liang, Shuncong Zhang, Yongchao Tang
Multiple-Rod Constructs Do Not Reduce Pseudarthrosis and Rod Fracture After Pedicle Subtraction Osteotomy for Adult Spinal Deformity Correction but Improve Quality of Life

Anouar Bourghli, Louis Boissière, David Käser, Daniel Larrieu, Javier Pizones, Ahmet Alanay, Ferran Pellise, Franck Kleinstück, Ibrahim Obeid; on behalf of the European Spine Study Group

Utility of the MISDEF2 Algorithm and Extent of Fusion in Open Adult Spinal Deformity Surgery With Minimum 2-Year Follow-up

Bo Li, Gregory Havyrlyuk, Praveen V. Mummaneni, Michael Wang, Ratnesh Mehra, Minghao Wang, Darryl Lau, Rory Mayer, Kai-Ming Fu, Dean Chou

An Anatomical Clue for Minimizing Iliac Vein Injury During the Anterolateral Approach at L5–S1 Level: A Cadaveric Study

Myeong Jin Ko, Seung Won Park, Seong Hyun Wui

Risk Factors of Unsatisfactory Robot-Assisted Pedicle Screw Placement: A Case-Control Study

Qi Zhang, Ming Xing Fan, Xiao-Guang Han, Ya-Jun Liu, Da He, Bo Liu, Wei Tian

Improvement in Neurogenic Bowel and Bladder Dysfunction Following Posterior Decompression Surgery for Cauda Equina Syndrome: A Prospective Cohort Study

Ryo Kanematsu, Junya Hanakita, Toshiyuki Takahashi, Manabu Minami, Tomoo Inoue, Kazuhiro Miyasaka, Hiroya Shimauchi-Ohtaki, Manabu Ueno, Fumiaki Honda

Outcomes of Transforaminal Lumbar Interbody Fusion Using Unilateral Versus Bilateral Interbody Cages

Conor P. Lynch, Elliot D.K. Cha, Augustus J. Rush III, Caroline N. Jadczak, Shrutli Mohan, Cara E. Geoghegan, Kern Singh

Change in Patient-Reported Outcome Measures as Predictors of Revision Lumbar Decompression Procedures

Michael T. Nolte, Elliot D.K. Cha, Conor P. Lynch, Kevin C. Jacob, Madhav R. Patel, Cara E. Geoghegan, Caroline N. Jadczak, Shrutli Mohan, Kern Singh

Unilateral Biportal Endoscopy for Decompression of Extraforaminal Stenosis at the Lumbosacral Junction: Surgical Techniques and Clinical Outcomes

Man-Kyu Park, Sang-Kyu Son, Weon Wook Park, Seung Hyun Choi, Dae Young Jung, Dong Han Kim

Commentary on “Unilateral Biportal Endoscopy for Decompression of Extraforaminal Stenosis at the Lumbosacral Junction: Surgical Techniques and Clinical Outcomes”

Chang Kyu Lee, Insoo Kim
Technical Note

882 Double Dome Laminoplasty: A Novel Technique for C2 Decompression
Dong-Ho Lee, Gian Karlo P. Dadulafa, Jong-Min Baik, Sehan Park, Jae Hwan Cho, Chang Ju Hwang, Choon Sung Lee

Editorial

889 Double Dome Laminoplasty: Works Well but There Are Exceptions
K. Daniel Riew

Technical Note

891 Percutaneous Endoscopic Interbody Debridement and Fusion for Pyogenic Lumbar Spondylodiskitis: Surgical Technique and the Comparison With Percutaneous Endoscopic Drainage and Debridement
Po-Ju Lai, Sheng-Fen Wang, Tsung-Ting Tsai, Yun-Da Li, Ping-Yeh Chiu, Ming-Kai Hsieh, Fu-Cheng Kao

Case Report

903 Upper Cervical Compression Myelopathy Caused by the Retro-Odontoid Pseudotumor With Degenerative Osteoarthritis and Calcium Pyrophosphate Dihydrate Disease: A Case Report and Literature Review
Takashi Yurube, Tetsuhiro Iguchi, Keisuke Kinoshita, Takashi Sadamitsu, Kenichiro Kakutani
Introduction to Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations

Salman Sharif¹, Mehmet Zileli²

¹Department of Neurosurgery, Liaquat National Hospital & Medical College, Karachi, Pakistan
²Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey

World Federation of Neurosurgical Societies (WFNS) Spine Committee is focused on giving a new horizon in light of research and available recent past data. With the increasing advances and day to day variations in surgical approaches, it has become extremely important to develop new guidelines and recommendations. After developing and publishing guidelines about cervical trauma,¹ spinal cord injury,² lumbar spinal stenosis,³ and cervical spondylotic myelopathy,¹ the WFNS Spine Committee has developed recommendations regarding thoracolumbar (TL) spine trauma. This was achieved after a gross literature search between 2010 and 2020 and then holding a consensus meeting. It is an honour for me to be part of this work done during the chairmanship of Prof Zileli, Prof Fornari, and myself.

Up-to-date information was reviewed to reach an agreement in the World Federation of Neurosurgical Societies (WFNS) Spine Committee meeting. The first meeting was conducted live in Peshawar in December 2019, and the second meeting was a virtual meeting on June 12, 2020.

Both meetings aimed to analyze a preformulated questionnaire through preliminary literature review statements based on the current evidence levels to generate recommendations through a comprehensive voting session. Delphi method was utilized to administer the questionnaire to preserve a high degree of validity. The consensus was achieved when the sum for disagreement or agreement was ≥ 66%. Each consensus point was clearly defined, with evidence strength, recommendation grade, and consensus level provided.

The 6 papers you will find in the following pages are guidelines for almost all aspects of the TL fracture. The annual incidence of TL fractures is about 30/100,000 inhabitants, including osteoporotic fractures. There is a trend towards increasing fractures in developed countries, especially due to low velocity falls in the elderly population. The mortality rate after the spinal injury decreases in developed countries due to improvements in motor vehicle safety and traffic regulations.⁵

The TL spine is the most frequently injured spinal region in blunt trauma. The potential risk of concomitant injury to the spinal cord, chronic pain, and life-long disability presents a significant burden on patients and the health service. Due to the range of injury classification systems and varied treatment efficacy, literature on the indications for nonoperative treatment of TL fractures is conflicting.

The WFNS Spine Committee was able to formulate numerous key recommendations to guide clinical practice. Although compression-type fractures and stable burst fractures can
be managed conservatively, if there is significant vertebral body damage, kyphotic angulation, neurological deficit, spinal canal compromise, surgical treatment may be indicated. AO type B, C fractures are preferably treated surgically. Both new AO and Thoracolumbar Injury Classification and Severity Scale are reliable classifications of traumatic TL fractures and are widely used. Recent literature has shown that modified AO classification, despite being more complex, can be helpful in the management of TL fractures.5

Regarding the radiographic evaluation of TL fracture, the committee recommends that anteroposterior/lateral standard radiographs may be obtained if a computed tomography (CT) scan/magnetic resonance imaging (MRI) scan is not available. CT retains an important role in assessing trauma but cannot reliably demonstrate the disco-ligamentous complex. Hence MRI may be considered. MRI is the most commonly used advanced imaging method and is the method of choice in disco-ligamentous and spinal cord abnormalities and other pathologies associated with spinal trauma.7

Surgical treatment of TL fractures can be a better option over the nonoperative approach, especially for those who cannot tolerate months in an orthosis or cast, such as those with multiple extremity injuries, skin lesions, obesity, and so forth. AO type B and C fractures preferably should not be treated conservatively.8 AO type A2, A3, and A4 can be treated conservatively if there is no significant vertebral body collapse, significant kyphotic angulation or canal compromise with neurological impairment. There is no clinical evidence that Bracing for conservative treatment of TL fractures will improve the outcome.9

Moreover, fracture-dislocations and cases with significant instability (score ≥ 5 of Thoracolumbar Injury Classification and Severity Score classification) preferably should be operated. Surgical decompression and stabilization may be considered for burst fractures with neurological deficits, although there is not enough scientific evidence to support that. Burst fractures without neurological deficits can be treated either with conservative or surgical techniques.

In most cases, short segment posterolateral pedicle screw fixation is sufficient for burst fractures. Incorporating the fracture level screw is preferable for burst fractures of TL junction.

Long-segment fixation is a better option at TL junction burst fracture if fracture level screw cannot be incorporated.10 Long-segment screws are sufficient, and fusion is not needed. There is no difference between the anterior and posterior approaches regarding the clinical outcome in TL burst fractures. Minimally invasive techniques may be considered in the treatment of TL burst fractures as the evidence suggests equivalent clinical outcomes. Compared to fusion surgery, nonfusion surgery for TL burst fractures has advantages of reduced bleeding, surgical time and donor site complications.11

There is no statistical data suggesting the progression of regional kyphosis after nonfusion surgery.

Anterior vertebral body height loss of more than 50% may lead to progression of the kyphotic deformity. Detection of injury of the posterior longitudinal ligament complex is important as it significantly influence the outcome. Burst fractures with sagittal-transverse canal diameter ratio < 0.40 are highly associated with neurological injury and outcome.12 The most common reason for posttraumatic kyphosis is untreated, unstable burst fractures. For treatment of posttraumatic kyphosis, the global sagittal balance has to be taken into consideration, and there is no proven definite kyphosis angel for indication of surgery. Posterior surgery can achieve satisfactory kyphosis correction with less blood loss and complications.

Future research is necessary to tackle the relative scarcity of evidence pertaining to patients with TL fractures. WFNS Spine Committee will continue to endeavour to teach, train, guide and inspire spine surgeons worldwide.

ACKNOWLEDGEMENTS

We want to thank all WFNS Spine Committee members for their outstanding contributions to the consensus meetings and unparalleled devotion to publish these guidelines.

REFERENCES

6. Verheyden AP, Spiegl UJ, Ekkerlein H, et al. Treatment of
fractures of the thoracolumbar spine: Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine J 2018 Sep;8(2 Suppl):34S-45S.

Looking for the Optimum Treatment of Thoracolumbar Spine Fractures

Se-Hoon Kim
Department of Neurosurgery, Korea University Ansan Hospital, Korea University Medical Center, Ansan, Korea

The World Federation of Neurosurgical Societies (WFNS) Spine Committee has recently created several consensus meetings using Delphi method and has published new recommendations on specific spinal disorders, such as cervical spondylotic myelopathy, ossification of the posterior longitudinal ligament, lumbar spinal stenosis, cervical spine trauma, and spinal cord injury.\(^1\-^5\) Though controversy still exists in the optimum treatment of the spinal disorders, a continued high-level research and better reporting of outcomes, however, is necessary to make an optimal management and to work toward more standardized treatments for various spinal disorders.

In the current special issue of the *Neurospine*, readers will find up-to-date recommendations of the WFNS Spine Committee for the thoracolumbar spine fractures. Six review articles have focused on the epidemiology, classification and radiological diagnosis, outcome factors, indications for nonsurgical treatment, surgical techniques, and posttraumatic kyphosis of the thoracolumbar spine fractures by performing a systemic literature search of the last 10 years, reporting evidence, and producing the recommendations of the WFNS Spine Committee through 2 consensus meetings.

The thoracolumbar spine represents the transitional zone from a rigid segment to a mobile segment, making it very vulnerable to traumatic lesions. Fractures of the thoracolumbar spine are the most frequently injured part of the spine, representing 90% of all spinal injuries, followed by cervical and lastly by lumbosacral spine.\(^6\-^8\) The average annual incidence of thoracolumbar spine fractures was 30.4 per 100,000 inhabitants and the most frequent etiology was traffic accidents and fell from heights in a Swedish study. Among patients younger than 60 years of age, the annual incidence was 13 per 100,000 and was twice as high in men as in women, the incidence, however, increased steeply with age and in patients 60 years or older, it was higher in women than in men. Lifelong disability following thoracolumbar spine fractures may produce a significant economic burden on relevant society and healthcare funding.

Despite tremendous improvements in spinal imaging and management techniques over the last several decades, there has been still a lack of consensus or no standard guidelines for indications of nonsurgical or surgical treatment, optimal surgical approach and technique, fusion levels, amount of kyphosis correction and factors affecting the clinical outcome of the thoracolumbar spine fractures.

I wish the recommendations of the WFNS Spine Committee in these 6 review articles will be quite helpful to readers in better understanding and improving their treatment strategy for the thoracolumbar spine fractures.
In the conclusion of this editorial, as one of the valued members of the WFNS Spine Committee, I'd like to cherish our friendship and proudly express my deep gratitude to all members of the Spine Committee for their outstanding collaboration and tremendous contributions to the committee and the outcomes.

CONFLICT OF INTEREST

The author has nothing to disclose.

REFERENCES

Title: Girl Before a Mirror
Artist: Pablo Picasso
Year: 1933
© 2021 - Succession Pablo Picasso - SACK (Korea)
Classification and Radiological Diagnosis of Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations

Abdul Hafid Bajamal¹,², Khrisna Rangga Permana¹,³, Muhammad Faris¹,³, Mehmet Zileli⁴, Nikolay A. Peev⁵

¹Division of Neuro-Spine, Department of Neurosurgery, Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
²Airlangga University Hospital Surabaya, Surabaya, Indonesia
³Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
⁴Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
⁵Department of Neurosurgery, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK

The aim of this review is to determine recommendations for classification and radiological diagnosis of thoracolumbar spine fractures. Recommendation was made through a literature review of the last 10 years. The statements created by the authors were discussed and voted on during 2 consensus meetings organized by the WFNS (World Federation Neurosurgical Societies) Spine Committee. The literature review was yielded 256 abstracts, of which 32 were chosen for full-text analysis. Thirteen papers evaluated the reliability of a classification system by our expert members and were also chosen in this guideline analysis. This literature review-based recommendation provides the classification and radiologic diagnosis in thoracolumbar spine fractures that can elucidate the management decision-making in clinical practice.

Keywords: Thoracolumbar spine fracture, Classifications, Therapy recommendation, Radiological diagnosis

INTRODUCTION

The thoracolumbar spine is the most often fractured part of the spine.¹ Wang et al.¹ in 2012, recorded that 54.9% of patients had injuries in the thoracolumbar spine in a comprehensive series of 3,142 patients at high-risk spinal fractures. The thoracolumbar junction is marked by significant biomechanical strain due to its location between the rigid thoracic and dynamic lumbar spines.² For more than 8 decades, trauma and spine surgeons have been perplexed by a broadly agreed thoracolumbar fracture classification. Persistent occurrences refer to the seriousness of an injury.¹ A description of spine fractures is essential to create a common language for diagnostic purposes.³ To promote the creation of a globally accepted treatment algorithm and to make treatment guidelines for a wide variety of thoracolumbar injuries.³ Encouraging constant communication between practicing doctors in order to develop a common terminology for identifying an injury configuration when a patient requires surgery, and directing care with a comparative assessment of the type and severity of injury.² This clinical guideline was developed to enhance patient care by recommending a description and diagnosis for thoracolumbar spine fractures.⁶

MATERIALS AND METHODS

The guidelines for thoracolumbar spine fracture classification were proposed by World Federation of Neurosurgical Societies (WFNS) members following a study of the literature on the
classification and radiological analysis of thoracolumbar spine fractures. We conducted a review of the literature from 2010 to 2020 using the keywords “thoracolumbar fracture and classification” and “thoracolumbar fracture and radiology”; PubMed and MEDLINE reported 1,057 findings. Additionally, we conducted a manual search and discovered 15 journals. We excluded articles written in non-English languages, case notes, and low-quality case series. Then, for this analysis, we reviewed 32 papers. Fig. 1 depicts the flowchart of the literature findings. The WFNS Spine Committee reviewed current evidence on the recognition and radiological evaluation of thoracolumbar fractures in order to reach consensus at 2 consensus meetings. The first meeting was held in Peshawar in December 2019 with the attendance and involvement of WFNS Spine Committee members. On June 12, 2020, a virtual meeting was held.

Both meetings were designed to discuss a preformulated survey from detailed literature reviews and comments about the current state of evidence in order to elicit recommendations in a thorough polling session.

To ensure a high degree of validity, we administered the questionnaire using the Delphi system. To achieve consensus, participants individually voted on their degree of agreement or disagreement on each item using a Likert-type scale ranging from 1 to 5 (1 = firmly oppose, 2 = disagree, 3 = fairly agree, 4 = agree, 5 = strongly agree). The results are expressed as a percentage of respondents who responded with a 1 or 2 (disagreement) or a 3, 4, or 5 for each object (agreement). Consensus was reached as the total of the points of dispute or compromise reached 66%. Each consensus point was established in detail, including the strength of the proof, the recommendation score, and the consensus standard.

RESULTS

The literature search yielded 2,028 abstracts, 32 of which were selected for full-text review. Our task force participants tested the effectiveness of a classification scheme in 13 articles, which were all included in this research guideline.

DISCUSSION

1. Thoracolumbar Spine Fractures Classifications

1) Goal of classification

The classification of thoracolumbar fractures aims to promote better coordination between treating doctors, to provide a standard vocabulary for describing injury configurations, and to provide a consistent measure of the injury’s form and severity. Additionally, the designation would serve as a clear guide for management, regardless of whether the patient requires surgery.

Finally, the classification’s primary objective is to facilitate the
implementation of a globally agreed therapeutic algorithm that can offer treatment guidelines for a broad range of thoracolumbar injuries.7

2) Requirements for an ideal classification

A reasonable spinal fracture classification system should be detailed, intuitive, and easy to use. Additionally, the definition must be consistent in describing the injury to be tested using a variety of techniques. Additionally, it must forecast the result and have a moderate to fair degree of reliability.5

The majority of current classifications do not meet the above requirements. While others are oversimplified, some are much too inclusive and nuanced for everyday use. In a functional level, these classifications fail to correctly indicate whether an injury is stable or unstable.3

3) History and evolution of classification system

The definition of thoracolumbar fractures dates all the way back to 1929, when Boehler proposed his accident types. He described 5 distinct categories of thoracolumbar injuries by fusing anatomical details of the fracture with information about the cause of injury.8,9

Watson-Jones suggested a new classification scheme based on Boehler’s study in 1938.10 Watson-Jones was the first to emphasize the importance of maintaining the continuity of the posterior ligamentous complex (PLC) for spinal cohesion, as well as the principles of anatomic reduction and radiographic orientation.8 Nicoll11 sought to better characterize equilibrium in 1949 by using an anatomical classification. In contrast to his contemporaries, Nicoll believed that the main determinant of equilibrium was the integrity of interspinous ligament (ISL).12

Holdsworth extended Nicoll’s scheme to include the whole spine more than 25 years later. It was a breakthrough when the “panel idea” was introduced.13 Holdsworth divided the spine into 2 major columns; anterior and posterior.12 This definition emphasized the integrity of the ISL and emphasized the importance of the posterior column in maintaining spinal stabilization.8 In 1968, Kelly and Whitesides14 worked to improve Holdsworth’s classification system. They asserted that burst fractures are intrinsically fragile.8

With the introduction of computed tomography (CT) technology in the early 1980s, it became essential to revise previous classification schemes. Denis15 updated Holdsworth’s “column principle” in 1983 by substituting 3 columns for two. The middle column consisted of the vertebral body’s posterior portion, which included the annulus fibrosus and the posterior longitudinal ligament.

McAfee et al.16 improved and extended the Denis scale in order to further describe the enigmatic property of uncertainty. This classification scheme places a focus on the PLC as the primary determinant of fracture stability. McAfee suggested that the failure of the middle column could be calculated and that this aspect affected injury stability.

Ferguson and Allen17 rejected the “panel definition” in 1984 and suggested a classification scheme based on injury function and loss patterns that included anterior and posterior spinal “elements.” Their suggested classification scheme for thoracolumbar injuries was an extension to their more commonly accepted cervical injury classification, which is a strictly mechanical classification.8

The Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification scheme was established in 1994 as a result of a multicenter review involving over 1,445 thoracolumbar injuries. Initially, the AO classification was extended to extremity fractures, with injuries classified on a progressive severity scale ranging from type A to type C. As was the case with Ferguson and Allen,17 the severity of injury is determined by a variety of factors, including technical integrity and the likelihood of neurologic injury.18

A1 was the least severe fracture, while C3 was the most severe. There were a total of 53 distinct trends. Magerl et al.18 abandoned Denis’s 3-column theory in favor of Holdsworth’s 2-column theory while establishing the AO classification. The AO classification attempted to provide a systematic scheme that encompassed all fractures. Nonetheless, the scheme proved to be confusing beyond the most elementary classification stage and exhibited only modest inter- and intraobserver reliability.19,20 Additionally, the AO classification lacked a concrete description of stability and failed to characterize neurologic deficits. The AO classification and magnetic resonance imaging (MRI) results of instability based on posterior ligamentous integrity had a low correlation.21

The thoracolumbar injury classification and severity score (TLICS) was established in 2002 by the Spine Trauma Study Group to help determine which considerations to include when performing surgery on thoracolumbar injuries. Additionally, this multinational community of spine surgeons sought to find commonalities in care algorithms perceived to be driven by the thoracolumbar injury characteristics. The TLICS was developed as an injury severity scale with the aim of informing treatment and predicting outcome. In general, TLICS could be used to systematically classify accidents and guide care, following the
requirements for a classification system.22

The TLICS is focused on 3 main characteristics of injury: the cause of injury, the PLC’s dignity, and neurologic condition. An analysis of imaging research, including plain radiographs, CT, and MRI, is used to conclude the cause of damage and the state of the PLC. It was the first to use data from MRI. A cumulative score is derived from the severity scores assigned to these 3 groups and can be used to coordinate care.4

While TLICS remains the most robust grading scale to date, further work should be done to improve the system’s accuracy and validity.1 One significant criticism leveled at this designation is that its authenticity has never been independently checked by a panel other than the creators.19,23

In 2012, the AO Spine Knowledge Forum Trauma committee revised the classification scheme and created a single classification system for spinal column trauma. The upper cervical spine, the subaxial cervical spine, the thoracolumbar spine, and the sacrum are also included. The morphological component of the system is focusing on the hierarchical AO fracture classification system, which divides fractures into 3 major groups (A, B, and C), each of which has many subtypes depending on the severity of the injury. Neurologic status at the time of initial admission is often graded using a simple and understandable procedure that is consistent in all spine areas. To improve the granularity of the underlying patient status and to integrate critical additional clinical facts, a system of supplementary modifiers was developed by consensus of the world’s largest multispecialty spine society through a series of consensus-based confirmation studies led by the AO Spine Trauma Knowledge Forum. In addition to the basic alphanumeric injury description scheme, patient-specific modifiers take into account important injury and disease features that can affect the choice of operative versus conservative care and outcome. These are critical factors when treating trauma patients, as modifiers assist in coordination between surgeons and help to consolidate care habits. Validation tests conducted on the subaxial cervical spine and thoracolumbar spine suggest their inter- and intraobserver reliability.7,24

4) Recent literature thoracolumbar fracture classifications

The TLICS classification, established in 2002 by the Spine Trauma Study Group, was widely used by physicians and radiologists to classify thoracolumbar fractures in order to develop an effective therapeutic approach.25 This has been the most often used classification method for patients with thoracolumbar injuries until recently.4 TLICS attempted to quantify the severity of injuries and aid in the development of care guidelines26 as well as serve as the best possible measure of surgical versus nonsurgical management.4

Initial research with TLICS demonstrated a high degree of reliability and variability in accident classification and recovery plans. However, some of the experiments were written by the TLICS system’s developers.22,23,27 Both subgroups’ interrater kappa statistics were within the spectrum of modest to significant reproducibility (0.45–0.74). It possesses an adequate degree of reliability and validation for classifying thoracolumbar fractures and prescribing effective therapeutic measures,28 and reliable when used by experts.26

TLICS also has some problems, despite its high reliability and validity. Worldwide implementation is restricted due to the understanding of its creators’ treatment prejudices and the fact that they do not correctly reflect widely recognized treatment algorithms in many parts of the world.27,28,30

The PLC score was the least reliable component26 since it necessitates the use of an MRI that is restricted in functional emergency applications. The condition of the PLC is indeterminate. Neurological scoring can be impossible during spinal shock. Additionally, there is a need to determine the indirect radiographic parameters of an unstable spine.3 TLICS does not prescribe surgical stabilization in cases of rotational damage (score of 3), with intact PLC and neurology. However, this kind of injury is classified as more unstable than distraction injuries in the AO classification (type C).8

Additionally, there is a question for burst fractures. For instance, an L1 fracture with compression and burst fracture injury (1 and 1), an intact PLC (0 point), and a normal neurologic status (0 points). At the TLICS level 2, the classification takes into account nonoperative management. However, the analysis of Joaquim and Patel27 shows that this situation results in a 20% reduction of height with a 19° kyphotic angulation. Additionally, considering the availability of 3 randomized trials, there is confusion about the optimal treatment of patients with moderate incidence burst fractures (TLICS score 4, the integrity of the PLC is indeterminate).6

Some other recent classification system for TL fractures is the Latest AO Spine Thoracolumbar Classification System, which was revealed in 2012. Verheyden et al.3 discuss how this classification scheme establishes accurate terms for spinal criteria and therapeutic mechanisms, which is essential for clinical consultation and medication recommendations. Additionally, they demonstrate that the device can aid in successful diagnosis by accurately assessing the fracture morphology. In the other hand, this diagnostic scheme highlights critical morphological modi-
fiers for decision-making, such as sagittal or coronal symmetry disruption, the extent of vertebral body destruction, spinal canal stenosis, and intervertebral disc lesion.

Gamanagatti et al.4 argue that this is the most comprehensive and realistic classification scheme available, reflecting a progressive progression of morphological injury that allows for the determination of the degree of instability. Additionally, the categorization is precise and scientifically relevant; a higher level implies greater seriousness, and therefore greater uncertainty, as well as the style of management and prognosis. This system is straightforward, convenient, and easy to use due to a basic algorithm designed for radiologistsclinicians.4 Additionally, the inter- and intraobserver reliability of this classification scheme has been shown. It means that the case presentations were interpreted consistently.31

Furthermore, there is a reasonable recommendation for therapy. Following a study of the most recent trials with the highest level of data, it was determined that the clinical guidelines in this classification scheme were beneficial for everyday practice. However, morphological modifiers could be discussed in future research to determine their impact on daily decision-making and result. Additionally, more differentiated evidence-based therapy algorithms should be available on this framework in the future.2

Despite favorable reviews of the current AOSpine Thoracolumbar Classification System and its morphological modifiers, some condemn the system for being too inclusive, nuanced, and inefficient for normal clinical practice. Additionally, it made no recommendations for therapy, and their reproducibility is a major issue.37 Finally, Table 1 summarizes the 2 most recent and widely used thoracolumbar fracture classification schemes. The description of thoracolumbar fractures is recommended at the conclusion of the article.

2. Radiological Diagnosis of Thoracolumbar Spine Fractures

1) Radiological evaluation

Anteroposterior and lateral radiographs are also common and necessary radiographic examinations. The above examination should include spinal orientation, any rotation or translation, kyphosis, vertebral height loss, and widened interpedicular or interspinous distances.32

CT is also a vital modality for evaluating thoracolumbar fractures, especially in emergency situations. It contains additional information about the fracture and the degree of canal compromise. However, about 25% of burst fractures are mistaken as stress fractures based solely on radiographs.32

| Table 1. Comparison of TLICS and the new AOSpine classification systems for thoracolumbar fractures |
|---|-----------|-----------|
| Features | TLICS | New AO |
| Correct terminology | ± | + |
| Accurate morphology diagnosis | - | ++ |
| PLC injury determination | ± | + |
| Burst fracture determination | ± | + |
| Assessment of severity | + | ++ |
| Recommendation for therapy | ++ | + |
| Inter-/intraobserver reliability | + | + |
| Validity in the interpretation | + | + |
| Ease of use in clinical practice | Easy | Complex |

TLICS, thoracolumbar injury classification and severity score; AO, Arbeitsgemeinschaft für Osteosynthesefragen; PLC, posterior ligamentous complex; ±, fair; +, strong; -, none; ++, very strong.

MRI may also be used to evaluate thoracolumbar fractures, but it is not recommended in emergency situations. In these cases, MRI provides useful knowledge about nonbony structures and soft tissues, especially about spinal cord or root injury. It can detect and quantify cord edema and hemorrhage, as well as epidural hematomata. Additionally, it can test intervertebral disc and PLC damage and detect the existence of noncontiguous injuries (23.8%) by evaluating the whole spine.32

2) Radiological factors on diagnosis of thoracolumbar spine fractures

Numerous radiological influences influence thoracolumbar fracture diagnosis, medical considerations, and outcome. Both of these factors can occur individually or in combination with other factors, depending on the mechanism of the trauma.

1) Vertebral body height

In the event of a vertebral body fracture, the height of the vertebral body can decrease. It is most often found in the anterior portion of the vertebral body and is graded as A1–4 by the AOSpine classification.33

Numerous calculations may be used to quantify it. The first equation is the most straightforward. The anterior vertebral body compression percentage (AVBC) is specified as the ratio of the anterior vertebral body height (AVH) to the posterior vertebral body height (PVH).34

\[
AVBC = \frac{AVH}{PVH} \times 100\%
\]

The second equation is used to calculate the loss of AVH. It is calculated by dividing the difference between the mean height
of the anterior vertebral body above and below the broken vertebrae by the height of the anterior vertebral body inside the fractured vertebrae (Fig. 2). The equation as follows:

\[\% \text{ of vertebral height loss} = \left(\frac{(A+C)-B}{A+C} \right) \times 100 \]

These calculations have clinical significance in determining the kyphotic lesion. If the AVH decreases by more than 50%, the resulting segment is kyphotic.35

(2) PLC and interspinous distance

The PLC is a group of spine components comprised of the supraspinous ligament, the ISL, the facet capsule ligament, and the ligament flavum.36 This complex works in conjunction with the surrounding fascia and muscles to withstand bending and compressive stresses, thus stabilizing the spine by preventing repetitive motion. In a case of thoracolumbar fracturing, disruption of PLC integrity results in instability and kyphotic deformity.37-40 It is critical in determining stabilization and subsequent medication selection.

PLC evaluation is critical because its deficiency has a direct effect on the seriousness of the fracture.41 More than 3.5 mm of vertebral translation is strongly associated with PLC damage. Variations of up to 7 mm in the interspinous gap are possible. However, technically, an expansion of the interspinous gap of more than 20% indicates an unstable PLC that requires surgical care. However, it should be checked by an MRI evaluation.42,43 The interspinous distance equation is depicted in Fig. 3:

Interspinous widening \[\% = \left(\frac{B - \frac{(A+C)}{2}}{\frac{(A+C)}{2}} \right) \times 100 \]

Take note that the PLC injury is very unpredictable, and the associated brain injury necessitates surgery.44 Due to the critical

![Fig. 2. Measurements used in the calculation of anterior vertebral body height loss. Measure from the lateral x-ray film the height of the most anterior corpus vertebra (straight line): (A) the height of normal superior vertebra; (B) the height of the fractured vertebral body; (C) the height of the normal inferior vertebra. Reprinted from Ruiz Santiago et al., Quant Imaging Med Surg 2016;6:772-84.35](image)

![Fig. 3. Measurements used in the calculation of interspinous distance in anteroposterior x-ray film, Make a horizontal straight line right on the upper edge of each spinous process, then the distance between the adjacent horizontal lines is the interspinous process distance: (A) Interspinous distance of normal superior vertebra; (B) Interspinous distance of a fractured vertebra; (C) Interspinous distance of normal inferior vertebra. Reprinted from Ruiz Santiago et al., Quant Imaging Med Surg 2016;6:772-84.35](image)
nature of the PLC evaluation, PCL integrity can necessitate a shift in care from conservative to surgical management.32,45

CT scan findings are correlated with clinical neurological findings about the extent and degree of spinal cord trauma, as well as the presence and severity of PLC injury in this situation.32,45 Apart from CT scans, such radiological observations, such as vertebral body translation on simple x-ray, are also accurate indicators of PLC damage (AO type C). Without vertebral body fracture, focal kyphosis is also a good indicator of PLC injury. Disruption of the PLC portion is also the most accurate predictor of PLC injury on T1 sagittal segment MRI.41 Moreover, there is a chance of development of kyphosis if a PLC lesion is discovered in conjunction with a burst fracture, whether complete or incomplete.34

(3) Facet joints/pedicles
The stiffness of the facet joints and pedicles also has an impact on the treatment options for thoracolumbar injuries. Bilateral facet joint-pedicle dislocation-fracture is synonymous with thoracolumbar AO type B2 damage.33

(4) Intervertebral disc space
Most often, anterior disc space expansion occurs with or without avulsion and/or shear chip fracturing of the anterior endplate. It is associated with disability caused by hyperextension (AO type B3 on thoracolumbar fractures classification). Increased disc space width signals an unstable injury that can necessitate surgical intervention.33,44,45

(5) Spinal canal diameter
Details regarding the degree of canal stenosis should be used in burst fractures. Since the degree of stenosis in neurological injury differs between vertebral stages, it can be expressed as a percentage. However, a sagittal-to-transverse diameter ratio of 0.40 is strongly correlated with neurological damage.46

The spinal canal diameter ratio can be easily determined using CT scan axial cuts. Given that B is the spinal canal diameter ratio at the level of injury, A and C are the spinal canal diameter ratios of surrounding tissues vertebrae, respectively, above and below the level of injury.46 The equation as it follows (Fig. 4).35

\[
\text{Canal narrowing percent} = \frac{A + C - B}{A + C} \times 100\%
\]

(6) Displacement - dislocation
Vertebral displacement or dislocation is a form of thoracolumbar fracture that is extremely unstable. Since it involves the whole vertebral column, it is graded as the most severe level of damage on the AOSpine classification of thoraco-lumbar fractures (AO Spine type C – translational injuries). Indeed, surgical intervention is needed.43

(7) Spinal lordosis - kyphosis
This may be the product of incomplete correction, which results in kyphosis progressing late. Kyphosis resulted in constant back pain, and its correction improved clinical symptoms in posttraumatic kyphosis.46,47

In spinal surgery, it is necessary to restore the usual range of thoracolumbar curvature in order to prevent further improper

![Fig. 4. Measurements used in the calculation of canal narrowing percent in axial computed tomography scan of the vertebral body. The ratio of each spinal canal is the division of the sagittal diameter (s) by the transverse diameter (t). (A) Canal ratio of the normal superior vertebra; (B) Canal ratio of the fractured vertebra; (C) Canal ratio of the normal inferior vertebra. Reprinted from Ruiz Santiago et al., Quant Imaging Med Surg 2016;6:772-84.35](Image 382x116 to 548x282)
loading of the spine, which may result in another secondary complication.\(^{46}\) As a result, the surgery's objective is to achieve a fair adjustment and appropriate alignment. Cobb's 7° are the desired practical result. Cobb's 20° correction deficiency has a clear association with extreme back pain.\(^{49}\) Cobb's angle greater than 10.5° immediately after operation was significantly correlated with an adverse radiographic result, which is associated with a worse clinical outcome.\(^{50}\)

(8) Statements about radiological diagnosis of thoracolumbar spine fractures

As a result of the preceding examination, multiple radiological causes may be identified with the diagnosis of thoracolumbar fractures and can be considered when planning surgery and assessing the surgical outcome. A reduction of more than 50% of the AVH results in the onset or development of kyphotic. PLC evaluation is critical because its deficiency has a direct effect on the seriousness of the fracture. Widening of the interspinous gap by 20% or more is considered a symptom of an unhealthy PLC and should be checked via MRI. Stable disc lesions include those depicted in AO type B-3.1 and those caused by hyperextension damage with an anterior subluxation. Details regarding the degree of canal stenosis should be used in burst fractures. A ratio of sagittal-to-transverse diameters of 0.40 is strongly correlated with neurological damage. Cobb's angle greater than 10.5° directly after operation is associated with adverse radiological effects and a weak clinical result. Cobb's 20° correction deficiency has a clear association with extreme back pain. Table 2 contains a summary of the study.

Table 2. Review statements: radiological factors which affect the clinical symptoms

1.	A decrease in anterior vertebral height of more than 50% should be considered as a risk in its course of causing kyphotic development.
2.	Widening the distance between spinous processes by more than 20% can be a sign of posterior ligamentous complex instability and should be confirmed by magnetic resonance imaging.
3.	In burst fractures, the degree of stenosis of the canal should be measured. A sagittal-transverse diameter ratio < 0.40 may be associated with neurological injury.
4.	A Cobb angle of > 10.5° immediately after surgery may lead to unfavorable radiological results. Besides, loss of Cobb angle correction ≥ 20° can be associated with severe back pain.

CONCLUSION

Besides being critical for physician-physician communication, terminology and clinical algorithms may also determine the therapy, so it is crucial to examine fracture anatomy carefully. The current AO and TLICS classifications for thoracolumbar fractures have demonstrated their validity and utility in clinical practice. The AOSpine classification scheme for thoracolumbar spinal injuries is complicated. Nonetheless, it contains the majority of details on the degree of vertebral body injury, canal stenosis, intervertebral disk lesion, and neurological trauma.

Numerous radiological considerations have an impact on the diagnosis, the need of treatment, and the kind of surgery that can be done. As a result, the option of x-ray, CT scan, or MRI imaging is highly dependent on the nature of the observation. The radiological evaluation would determine whether or not the surgical objectives were met.

WFNS SPINE COMMITTEE RECOMMENDATIONS

Classification of Thoracolumbar Fractures

- Both the current AO and TLICS classifications are valid and can be used in clinical practice for traumatic thoracolumbar fractures.
- Recent research indicates that, considering its complexity, the current AO classification could be more useful in treating thoracolumbar fractures.

Radiological Diagnosis of Thoracolumbar Fractures

- If a CT scan/MRI scan is not available, anteroposterior and normal lateral radiographs may be obtained.
- Although CT is still critical for trauma evaluation, it cannot accurately demonstrate the disco-ligamentous complex; therefore, MRI should be considered.
- MRI is the most often used advanced imaging technique. It is the preferred treatment for discoligamentous disorders, spinal cord abnormalities, and other pathologies involved with spinal trauma.

CONFLICT OF INTEREST

The authors have nothing to disclose.
ACKNOWLEDGMENTS

The authors would like to thank their respected institution for the support: Department of Neurosurgery, Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia; Airlangga University Hospital Surabaya, Surabaya; LPDP Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; Ege University Neurosurgery Department, Izmir, Turkey; Department of Neurosurgery, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK.

REFERENCES

24. Divi SN, Schroeder GD, Oner FC, et al. AOspine-Spine Trau
ma Classification System: the value of modifiers: a narrative review with commentary on evolving descriptive principles. Global Spine J 2019;9(Suppl):77S-88S.
Surgical Techniques for Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations

Salman Sharif¹, Yousuf Shaikh¹, Onur Yaman², Mehmet Zileli³

¹Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
²Department of Neurosurgery, Memorial Bahçelievler Spine Center, Istanbul, Turkey
³Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey

To formulate the specific guidelines for the recommendation of thoracolumbar fracture regarding surgical techniques and nonfusion surgery. WFNS (World Federation of Neurosurgical Societies) Spine Committee organized 2 consensus meeting. For nonfusion surgery and thoracolumbar fracture, a systematic literature search in PubMed and Google Scholar database was done from 2010 to 2020. The search was further refined by excluding the articles which were duplicate, not in English or were based on animal or cadaveric subjects. After thorough shortlisting, only 50 articles were selected for full review in this consensus meeting. To generate a consensus, the levels of agreement or disagreement on each item were voted independently in a blind fashion through a Likert-type scale from 1 to 5. The consensus was achieved when the sum for disagreement or agreement was ≥ 66%. Each consensus point was clearly defined with evidence strength, recommendation grade, and consensus level provided. A magnitude of prospective papers were analyzed to formulate consensus on various surgical techniques that can be employed to address different types of thoracolumbar fractures. Surgical treatment of thoracolumbar fractures can be a better option over the nonoperative approach, especially for those who cannot tolerate months in an orthosis or cast, such as those with multiple extremity injuries, skin lesions, obesity, and so forth. It generally allows early mobilization, less hospital stay, reduced pulmonary complications, and better correction of sagittal balance. Current available literature fails to demonstrate any statistically significant benefit of fusion surgery over nonfusion in thoracolumbar fractures.

Keywords: Thoracolumbar fracture, Burst fracture, Spine trauma, Spinal fusion, Nonfusion surgery

INTRODUCTION

Traumatic fractures of the thoracolumbar spine, especially the thoracolumbar junction (T10–L2), are the most common fractures of the spinal column. One of the major contributing factors is the significant biomechanical stress acting on this junction between a mobile lumbar spine and a semirigid thoracic spine. The outcome can be devastating, ranging from complete paraplegia to incomplete weakness, persistent fracture site pain, and deformity.¹²

Patients with majority of thoracolumbar fractures may require surgical intervention, depending upon the degree of spinal instability. Over the past 75 years, many classification systems have been developed to quantify the degree of spinal instability and neurological compromise accurately, thereby aiding the decision-making process. Denis 3 column model was one of the easiest and most reproducible classifications and became the foundation of further advancement in fracture de-
scriptions. This was replaced by a much more complex AOSpine classification introduced by Magerl et al. in 1993. However, a recent study reported that the AO system (and the Denis) had only moderate reliability and repeatability among spine surgeons. The AO classification was later modified and was deemed essential for accurate diagnosis through proper assessment of the fracture morphology. Vaccaro et al. have proposed a novel thoracolumbar injury classification and severity score, which is relatively easy to reproduce and helps demarcate surgical patients from nonsurgical ones. This chapter will discuss the various surgical techniques that could be employed to address unstable thoracolumbar fractures.

MATERIALS AND METHODS

World Federation of Neurosurgical Societies (WFNS) Spine Committee organized 2 consensus meetings to formulate the recommendations for thoracolumbar fracture regarding surgical techniques.

A systematic literature search in PubMed and Google Scholar database was done from 2010 to 2020 with the keywords "thoracolumbar fractures" and "thoracolumbar spine fractures fixation technique.”

Up-to-date information on thoracolumbar fractures was reviewed to reach an agreement in a consensus meeting of the WFNS Spine Committee. The first meeting was conducted in Peshawar in December 2019 with WFNS Spine Committee members’ presence and participation. The second meeting was a virtual meeting via the internet on June 12, 2020.

Both meetings aimed to analyze a preformulated questionnaire through preliminary literature review statements based on the current evidence levels to generate recommendations through a comprehensive voting session.

We utilized the Delphi method to administer the questionnaire to preserve a high degree of validity. To generate a consensus, the levels of agreement or disagreement on each item were voted independently in a blind fashion through a Likert-type scale from 1 to 5. The consensus was achieved when the sum for disagreement or agreement was ≥ 66%. Each consensus point was clearly defined with evidence strength, recommendation grade, and consensus level provided.

RESULTS

A systematic literature search in PubMed and Google Scholar database was done from 2010 to 2020 with the keywords "thoracolumbar fractures" and "thoracolumbar spine fractures fixation technique.” The search yielded 1,223 and 1,678 results respectively. Most of the results were duplicated between 2 databases. The search was further refined by excluding the articles which were duplicate, not in English, or were based on animal or cadaveric subjects. The results included case reports, case se-

![Fig. 1. Flowchart of literature search of thoracolumbar fracture and surgical techniques. RCT, randomized controlled trials.](https://doi.org/10.14245/ns.2142206.253)
ries, prospective and retrospective studies, randomized studies, systematic reviews, and meta-analysis, shortlisting the count to 130. After reading the abstract, only 50 articles were selected for full review in this consensus meeting (Fig. 1).

Another search was performed using keywords "thoracolumbar fracture and nonfusion." The same criteria were used. There were 566 results in PubMed and MEDLINE. We removed osteoporotic and ankylosing spondylitis fractures, non-English language papers, case reports, and low-quality case series. Seven papers were analyzed for this review. A flowchart of the literature search is shown in (Fig. 2).

DISCUSSION

1. Compression Fractures

Majority of compression fractures are stable and require a short period of bed rest and immobilization.

2. Burst Fractures

Burst fractures are the most common fracture requiring surgical intervention. These can be considered stable if posterior ligaments and facets are intact. Before embarking on a surgical procedure, the major question that needs answering is whether the fracture requires surgical intervention or not. In order to identify surgical indications, multiple classifications systems have been proposed to further characterize these fractures. The Thoracolumbar Injury Classification and Severity Score (TLICS) is the most commonly used score that serves the basis for guiding further treatment plan. Patients with a total score greater than 4 indicate instability and require surgical intervention where as those with a score < 4 are managed conservatively. Relative surgical indications include patients with TLICS score of less than 4 if they have intractable pain not responding to medical management or if the patient wants early mobilization. Similarly, AO classification which is much more extensive also works on a point-based system with surgery indicated for patients with score more than 5.

Main principles of thoracolumbar burst fracture surgery are: neural decompression, improve stability, and correction of kyphosis. Thoracolumbar fractures with 25°–30° kyphosis, progressive neurological deficits, loss of vertebral height more than 50%, and compression of the canal more than 50% should be treated surgically.9 Unstable thoracolumbar fractures cause sagittal imbalance due to progressive kyphosis when they have not been treated.8,10

1) Burst fracture: posterior approach and variations

One of the most common and easy procedures to perform is posterior transpedicular screw fixation. It remains the most popular technique today, although not entirely free of complications, including instrumentation failure, pseudarthrosis, infection, and the need for late instrumentation removal.11 One of the dilemmas to overcome in such circumstances is to identify the number of levels that require fusion. For many years thoracolumbar junction fractures have been conventionally treated with long constructs with 4 screws proximal and distal to fracture level. Long-segments posterior fixation imparts greater stability and support with less chances of implant failure but at the cost of sacrificing motion segments. In addition, it is unclear how these constructs of variable length affect adjacent or nearby segments.12 Long-segment fixations are known to cause increased movement in adjacent disc spaces leading to raised intradiscal pressure. These biomechanical effects are known to hasten disc degeneration process.13 To overcome the limitations of long-segment fixation, many authors have put forward a short-segment fixation technique incorporating the pedicle of fractured vertebrae well over a decade ago.14 Parker et al.15 explained that a load-sharing score of 6 or less is sufficient to be treated by short-segment pedicle screw fixation. However, Lee et al.16 reported that in his study of 47 patients, short-segment pedicle screw fixation was ineffective with a load-sharing score of 7 or more. Kim et al.17 also reported significant differences in the loss of correction angle between long-segment and short-segment posterior fixations, indicating that short-segment posterior instrumentation is insufficient in cases with a load-sharing score of 7 points or above.

However, Altay et al.18 recommended that short-segment fixation provides adequate fixation with no loss of height or correction loss. Due to the ongoing dilemma and the possibility of implant failure with a large load-sharing score, a newer technique to incorporate fracture segment into the construct was introduced. Park et al.19 in their study of 45 patients, compared short-segment fixation and intermediate screw with long-segment fixation. A follow-up of 5 years was carried out to assess the degree of correction loss, implant failure, and revision surgery. His results showed that there was no significant difference in outcome between the 2 groups. Hence the use of intermediate screw has been shown to add strength to short-segment fusion. Recent biomechanical studies concur with the results showing the placement of intermediate screw at fracture level increases the stiffness of the construct and protects the anterior column during loading.20 Similar results have been demonstrated.
by Chung and Rhym21 who reported that easy indirect reduction of fractured vertebrae and improved segmental stability could be achieved by inserting the pedicle screw at the level of the fractured vertebra. Jeong et al.22 compared the clinical and radiological results between short-segment and long-segment pedicle fixation while inserting the pedicle screws at the level of the fractured vertebra in the thoracolumbar burst fracture and obtained similar results. Mahar et al.14 also reported that segmental fixation with additional screws at the level of the fracture increases constructs stiffness and shields the fractured vertebral body from anterior loads (Fig. 3A, B).

One of the major limitations to all these techniques is the lack of level 1 evidence. All the aforementioned papers and studies are small prospective trials or retrospective analysis. Only a handful of randomized controlled trials have been conducted and that too of a very small sample size. Those worth special mentioning are by Li et al.23 in 2016 who performed percutaneous pedicle screw fixation in 32 patients with 19 of them having an additional screw in fractured vertebra. His results concluded that an intermediate screw helped in better correction of kyphosis and a stronger construct. The other randomized controlled trial is by Lyu et al.24 in 2016 who compared 3 different techniques, 3-level percutaneous fixation, 2-level percutaneous fixation, and 3-level open fixation, respectively. His results showed 3-level percutaneous fixation to be the most effective technique in terms of operating time and blood loss. However, the efficacy of either technique was statistically same. (Fig. 4A, B).

With the available recent research, we can safely conclude that short-segment fixation with the incorporation of the fracture segment provides a stable construct even in a setting of high load-sharing score. In circumstances where anatomical boundaries are disrupted and fracture segment cannot be used, a long-segment fixation may be considered.

Recent trials for pedicle screw fixation technique are summarized in Table 1.

\textbf{2) Burst fracture: use of monoaxial screws and crosslinks}

The introduction of polyaxial screws has significantly increased recent trials for pedicle screw fixation technique.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{(A) D12 burst fracture. (B) Traditional long constructs for junctional fractures.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{(A) Burst fracture of thoracolumbar junction. (B) Short-segment fixation with an additional screw in fractured vertebrae.}
\end{figure}

\begin{table}[h]
\centering
\caption{Recent trials for pedicle screw fixation technique}
\begin{tabular}{|l|l|l|l|l|l|}
\hline
\textbf{Study} & \textbf{Year of publication} & \textbf{Research type} & \textbf{No. of patients} & \textbf{Comparison made} & \textbf{Results} \\
\hline
Park et al.19 & 2016 & Retrospective & 45 & 2-Level vs. 3-level fixation & Results are similar \\
Li et al.23 & 2016 & Prospective & 32 & Short-segment percutaneous screw vs. short segment with screw in fractured vertebrae & Short segment with screw in fractured vertebra is better \\
Lyu et al.24 & 2016 & Randomized controlled trials & 90 & 3-Level percutaneous fixation vs 2 level percutaneous fixation vs 3 level Open fixation & 3-Level percutaneous fixation is superior to open technique \\
\hline
\end{tabular}
\end{table}
ased the ease of rod placement, particularly in long constructs. However, monoaxial screws that had initially phased away are now being reinvestigated due to their beneficiary effects in reducing burst fracture segments. Yao et al. compared short-segment fixation using both monoaxial and polyaxial screws. He concluded that monoaxial screws at the fracture level have a flick-up effect on the central vertebral body contributing to the restoration of lost height. Similarly, Xue and Zhao used monoaxial screws with distraction and compression to reduce collapsed endplate. He concluded that satisfactory fracture reduction and correction of segmental kyphosis could be achieved and maintained with the use of monoaxial pedicle screw fixation, including the fractured vertebra (Figs. 5, 6).

Although not frequently used, the addition of crosslinks, particularly in short-segment fixation, has been biomechanically proven to increase the strength of the construct. An experimental study with cadaveric models has shown that crosslinks, when added to short-segment posterior fixation, improve stiffness and decrease motion in axial rotation. Despite these studies, there is a lack of level 1 or 2 evidence to suggest the use of crosslinks and its current use is largely dependent on the surgeon’s preference.

3) Burst fracture: nonfusion surgery

Unstable thoracolumbar burst fractures need to be treated surgically. However, the ideal surgery is still controversial. Long term of clinical and radiological results of posterior surgeries have been published.

Fusion surgery is an effective method used in the treatment of thoracolumbar fractures. Necessity of fusion surgery is controversial due to complications like pseudoarthrosis and adjacent segment. Articles on the effectiveness of nonfusion surgeries in thoracolumbar fractures have been published, in the last decade.

Anterior, posterior, and combined surgeries are the treatment options of thoracolumbar fractures. Posterior only surgery has good clinical and radiological results. Instrumentation levels for the treatment of thoracolumbar fractures is also another topic that has been discussed. The main advantage of short-segment instrumentation is the preservation of segmental motion. Intermediate screws (screw inserted in the fractured vertebra) strengthen the construct and they are more effective in correction of kyphosis.

Recent discussion is whether fusion is necessary for the treat-

![Fig. 5.](https://example.com/fig5.png) (A) Burst fracture of junction with significant loss of height and kyphosis. (B) Use of monoaxial screws for distraction and restoration of lost vertebral height.

![Fig. 6.](https://example.com/fig6.png) Distraction/compression method for height restoration using monoaxial screws.
ment of thoracolumbar fractures. Some papers are report better radiological correction with fusion surgeries compared to nonfusion surgeries. Other studies suggest that the loss in correction of kyphosis is less in patients who have undergone fusion surgery than nonfusion surgery, but difference is statistically insignificant.

4) Burst fracture: fusion surgery

The important advantage of fusion surgery is that the incidence of implant failure reduces when fusion is achieved. Despite this main advantage, fusion surgery decreases the segmental motion. It increases stress forces at the adjacent segment. Even in patients in which fusion is achieved, kyphosis may increase over time due to the decrease of the height of the disc. Screw breakage may occur due to the increase of kyphosis. It has been reported that screw fractures do not make a clinical difference.

Qian et al. reported that the posterolateral fusion was an effective measure to prevent implant failure in burst fractures, but Sanderson et al. and Dai et al. recommended that routine fusion was unnecessary in the operative management of these fractures. Singh et al. performed a prospective study where 66 patients with thoracolumbar fractures underwent posterior instrumentation with fusion. These patients were followed both clinically and radiologically for up to 12 months. Their results showed that they had less loss of the postoperative correction achieved for all radiological parameters on the final follow-up as compared to the available literature. Hwang et al. reported that in the patient group who underwent fusion surgery, there were infection, bleeding, pain, and wound healing problems in the iliac donor site. Excessive muscle dissection and bone removal for fusion increase bleeding in fusion surgery. Lan et al. have reported is no difference in postoperative clinical scores in the patient group with fusion and nonfusion surgery.

Studies have shown that nonfusion surgeries have less surgery time and reduce bleeding for the treatment of thoracolumbar fractures. Chou et al. have reported that thoracolumbar fractures that have been operated with nonfusion short-segment instrumentation have less bleeding, shorter surgical time, fewer bone graft donor site complications, and motion segment preservation. Hwang et al. compared thoracolumbar fractures patients that were treated with short-segment instrumentation with fusion and nonfusion and reported less bleeding and less surgical time in nonfusion surgery group compared to fusion surgery group. They also discussed the advantage of segmental motion preservation and less adjacent segment disease. Lee et al. showed less bleeding and minimal tissue damage with percutaneous short-segment instrumentation.

One of the disadvantages of nonfusion surgery is the need of the implant removal at the end of the first year to prevent implant failure. Kim et al. reported that they have removed the screws at the end of an average of 10 months. Sanderson et al. reported 14% screw fractures who underwent nonfusion short-segment instrumentation. They did not recommend removing the screws. Chou et al. compared the patients that have been treated with nonfusion instrumentation with and without screw removal. They have reported that there was no functional or radiological difference between the 2 groups.

(1) Radiological results of nonfusion surgery

Wang et al. stated that the patients in the nonfusion group obtained better radiological results than the fusion group and showed that segmental mobility decreased in the fusion group. Hwang et al. reported that kyphosis correction was more effective in the fusion group. Chou et al. compared fusion and nonfusion short-segment instrumentation for thoracolumbar fractures. They concluded that there was no significant increase in kyphosis between the 2 groups and suggested that the loss of correction that occurred in the follow-up was due to the decrease in the disc height because of the degeneration of the damaged disc rather than the vertebral height loss. Kim et al. published the results of thoracolumbar fractures patients who underwent nonfusion short-segment instrumentation in patients without the disc and facet injury and had no loss of correction.

(2) Clinical results of nonfusion surgery

There are many studies that have compared fusion and nonfusion short-segment instrumentation for thoracolumbar fractures. In all of these studies, no clinical or radiological difference was reported between the fusion and nonfusion groups. Chou et al. have compared fusion and nonfusion short-segment instrumentation groups and reported that there was no visual analogue scale (VAS) and low back outcome score difference between the 2 groups. Hwang et al. have compared fusion and nonfusion groups and they have reported that there was no clinically and radiologically significant difference in the correction of kyphosis. They also reported that there was loss of correction in the nonfusion group, but there was no clinically significant difference compared to the fusion group.

We summarized the 7 papers on nonfusion surgery for thoracolumbar fracture at Table 2.
Table 2. Summary of the reviewed papers on nonfusion surgery

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Evidence level</th>
<th>No. of patients</th>
<th>Main target of the study</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lan et al., 2017</td>
<td>Systemic review and meta-analysis</td>
<td>5</td>
<td>445</td>
<td>Comparing fusion and nonfusion for the treatment of thoracolumbar burst fractures</td>
<td>Nonfusion surgery has less blood loss, shorter operation time, better segmental motion and lower donor site pain</td>
</tr>
<tr>
<td>Chou et al., 2014</td>
<td>Prospective</td>
<td>2</td>
<td>22</td>
<td>Nonfusion surgery for thoracolumbar burst fracture</td>
<td>Regional segmental motion could be preserved without fusion</td>
</tr>
<tr>
<td>Hwang et al., 2012</td>
<td>Retrospective</td>
<td>4</td>
<td>46</td>
<td>Comparison of posterior fixation alone and fixation with fusion</td>
<td>No significant differences in the kyphosis correction and clinical outcomes between the 2 groups</td>
</tr>
<tr>
<td>Chou et al., 2016</td>
<td>Retrospective</td>
<td>4</td>
<td>69</td>
<td>The effect of removal of the implants after fixation of thoracolumbar burst fractures without fusion</td>
<td>The radiological and functional outcomes of both implant removal and retention were similar</td>
</tr>
<tr>
<td>Diniz et al., 2017</td>
<td>Systemic review and meta-analysis</td>
<td>5</td>
<td>220</td>
<td>Necessity of fusion for thoracolumbar burst fracture treated with spinal fixation</td>
<td>Arthrodesis did not improve clinical outcomes. Fusion was associated with increased surgical time and higher intraoperative bleeding</td>
</tr>
<tr>
<td>Kim et al., 2011</td>
<td>Retrospective</td>
<td>4</td>
<td>23</td>
<td>To evaluate the results of posterior stabilization of thoracolumbar fracture using nonfusion method</td>
<td>Nonfusion method is one of the most effective methods for thoracolumbar fractures, especially in young patients</td>
</tr>
<tr>
<td>Lee et al., 2013</td>
<td>Retrospective</td>
<td>4</td>
<td>59</td>
<td>The effect of percutaneous short-segment instrumentation without fusion for the treatment of thoracolumbar burst fracture</td>
<td>Percutaneous pedicle fixation without bone graft provided earlier pain relief and functional improvement</td>
</tr>
</tbody>
</table>

5) Burst fracture: anterior surgery

The anterior column supports about 80% of the axial load of an intact spine. When the anterior column is substantially injured, the anterior column support is reduced, leaving most of the stress transmitted by the posterior implant and the bony elements. Anterior surgery for such type of burst fractures was introduced in the 1980s when computed tomography (CT) scans demonstrated fracture fragments inside the spinal canal. Using an anterior transthoracic or transabdominal approach, the surgeon can directly visualize the fracture fragment and remove it completely without any traction on the spinal cord or risk of dural injury. If the defect is significant, it can be bridged with an artificial cage or bone graft to restore the height of the anterior column. Such forms of implants are usually supplemented with lateral body screw placement or posterior transpedicular screws. These techniques are as effective as posterior approaches in neurologically intact patients or even better in terms of restoration of vertebral body height and maintain sagittal balance with comparable outcomes. Other studies have shown that degree of neurological recovery is equal to or greater than 80% and significantly correlated with the quality of neural decompression.

The principle of ligamentotaxis is based on the distraction that allows intracanalicular bony fragments to be pushed back into the vertebral body. But this requires the presence of an intact posterior longitudinal ligament. Biomechanically, the anterior approach may seem to be a better option when posterior elements have been injured and the ligamentotaxis cannot be utilized. An isolated posterior approach is likely to cause iatrogenic injury to the spine or dura in these circumstances. But some surgeons have modified their posterior approach to address these pathologies by combining laminoarthrectomy and then unilateral pediculectomy. As previously mentioned, current anterior approaches are considered as safe as posterior approaches. Kaneda et al. performed a study on 150 patients with a burst fracture of the thoracolumbar spine with neurological deficits. These patients were subsequently managed with a single-stage anterior spinal decompression, strut grafting, and anterior spinal instrumentation. At an average follow-up of 8 years, radiographs showed successful fusion of the injured spinal segment in 140 patients (93%) with a neurological recovery of 95%. Not many studies have compared anterior with posterior approaches. A meta-analysis by Zhu et al. compared anterior and posterior surgeries and found no significant differences.
between the two. However, the anterior approach was associated with more blood loss. Wood compared the 2 approaches in 38 patients and followed them for 2 years. He reported similar patient outcomes between the 2 approaches and that anterior fusion and instrumentation for thoracolumbar burst fractures might present fewer complications32 (Fig. 7A–D).

One of the major drawbacks of the anterior approach is its technical difficulty.58 Not many surgeons are comfortable with the anterior approach, which might explain their tendency to shy away from these procedures and improvise on traditional posterior approaches. In addition to this, the procedure may be complicated in obese individuals with the possibility of significant blood loss. These parameters should be borne in mind while planning such operations.59

6) Minimally invasive techniques

Conventional open techniques that are being employed to address thoracolumbar fractures are often criticized due to associated blood loss and higher infection rates.60 In a systematic review conducted by Verlaan et al.61 blood loss of up to 1,000 mL has been documented in conventional open procedures with an average infection rate of 0.7% in anterior and 3% in posterior approaches. In addition to these, open procedures are also associated with significant approach-related morbidity. The anterior procedures are associated with significant perioperative pain, shoulder discomfort, and ventilation problems.62 Similarly posterior midline approaches lead to extensive retraction and muscle ischemia. These have been known to cause paraspinal muscle scarring, atrophy, and decreased muscle strength.63 The clinical effect of this muscle morbidity can be a significant postoperative pain and functional impairment in the long term.

In order to overcome these limitations, minimally invasive surgery (MIS) are being employed. Although there are no randomized controlled trials to document the safety and results of MIS techniques, most of the available literature suggests these procedures to be safe and effective.

(1) Anterior endoscopic decompression

For anterior approaches, an endoscope is most commonly used instrument. Endoscopic surgery requires appropriate training and experience. Since most injuries occur at the thoracolumbar junction, knowledge about the attachment and manipulation of the diaphragm is of extreme importance. The procedure is not only surgeon dependent but also requires endoscope-friendly instruments. Anterior endoscopic decompression assisted with posterior stabilization has been used to treat burst fractures64. A large trial with 371 patients was conducted by Khoo et al.65 in Germany, who did thoracoendoscopic decompression of burst fractures. In 35% of patients, a stand-alone anterior thoracoscopic reconstruction was performed. He reported a steep learning curve with a mean operating time of 300 minutes which was reduced to half after the 50th case. The risk of major complications in his series was 1%.

Similarly, Le Huec et al.66 performed video endoscopic decompression and cage placement in 50 patients with thoracic fractures. He achieved good results with better kyphosis correction and neural decompression. Simultaneous anterior and posterior procedures were performed in 20 patients. Although no complications were reported in any of the cases, a long-term

Fig. 7. (A) L1 burst fracture anteroposterior view. (B) L1 burst fracture lateral view. (C) Anterolateral approach with cage placement anteroposterior view. (D) Anterolateral cage placement lateral view.
follow-up was lacking. Compared to conventional open techniques, reduced blood loss, perioperative pain, reduced time to mobilization, and hospital stay have been noted.\(^6\)

(2) Percutaneous screw fixation
Percutaneous pedicle screw fixation can be used as a stand-alone procedure or an adjunct to anterior approaches in many circumstances. A systemic review by Phan et al.\(^6\) in 2017 compared 279 patients undergoing percutaneous pedicle screw fixation with 340 patients who underwent conventional open instrumentation. He concluded that percutaneous pedicle screw fixation was a safe and effective means to treat thoracolumbar fractures. It was associated with reduced blood loss, operating time, and hospital stay. Similarly, Wang et al.\(^6\) performed percutaneous pedicle screw fixation in 19 patients using the Sextant system and compared them with a conventional open group. After 2 years of follow-up, there were no significant differences in the postoperative sagittal Cobb angle, vertebral body angle, and the improvement of the vertebral body height and the kyphotic deformity correction between the 2 groups. He concluded that percutaneous pedicle screw placement is a good alternative to open procedures with shorter operating time and less blood loss. Another retrospective analysis by the same author compared MIS short-segment fixation with MIS long-segment fixation with screws in fractured vertebrae. Both of these procedures were then compared to the conventional open technique.\(^6\) This is one of the unique articles that compared these 3 different techniques and found no statistical difference between any of them. However, percutaneous screws with an additional screw at fracture level were superior, with better height restoration and kyphosis correction (Fig. 8A, B).

(3) Cement augmentation
Chen and Lee\(^7\) were the first individuals to use isolated cement injection to treat thoracolumbar burst fractures. They performed the technique on 6 patients. Although cement leak was seen radiographically in 4 patients, all of them remained asymptomatic. All the patients showed significant pain improvement postoperatively. Similarly, Huwart et al.\(^7\) described cement usage in 62 neurologically intact patients using CT-guided injection. Despite the high accuracy of the CT scan, cement leakage was still observed in 11%. All the patients showed significant improvement in Oswestry Disability Index (ODI) and VAS scores postoperatively. However, no long-term follow-up was available. In contrast to vertebroplasty, kyphoplasty involves an injection of contrast under low pressure within a confined created space, theoretically reducing the chances of cement leakage. Hartmann et al.\(^7\) performed stand-alone kyphoplasty in burst fractures and reported significant post-procedure improvement in pain. After 1-year follow-up, an average 6° loss of kyphosis correction was noticed radiologically though these patients remained asymptomatic. Currently, the literature available for stand-alone kyphoplasty and vertebroplasty in thoracolumbar trauma is very limited. Theoretically and based on small studies, kyphoplasty appears to be safer than vertebroplasty. However, despite such claims, isolated use of cement remains controversial in the trauma setting.

The objective of all forms of cement augmentation is to restore vertebral body height and support the anterior column. Cadaveric studies have shown that transpedicular vertebral body augmentation reduces pedicle screw bending moments by 59% in flexion and by 38% in extension, thereby decreasing the stresses on posterior instrumentation.\(^7\) While depressed vertebral cortices can be reduced indirectly through ligamentotaxis via traction on the annular fibers, the central portion of the vertebral body remains depressed. Kyphoplasty offers a potential solution to this problem by directly reducing and buttressing the depressed endplate while providing stability to allow bony healing.\(^7\) Multiple studies have shown benefits of cement augmentation with short-segment pedicle screw fixation.
Afzal et al.75 reported a series of 16 patients with cement injection and short-segment fixation for burst fractures. Cement leakage into the canal was seen in 3 patients, which required immediate removal of cement. All their patients recovered successfully with no additional neurological deficits. Similarly, Verlaan et al.76 and Fuentes et al.77 showed similar results of cement augmentation and short-segment fixation in a limited number of patients with good kyphosis correction and stability. Cho78 was one of the first ones to compare cement augmentation and short-segment fixation with short-segment fixation alone. The author concluded that at a 2-year follow-up, patients with cement augmentation have better kyphosis correction and pain improvement than other groups with no identifiable complications.79 Lastly, a prospective randomized trial in patients older than 65 years with burst fractures was randomized into kyphoplasty (controls) and kyphoplasty with short-segment pedicle screw instrumentation. Patients treated with kyphoplasty and spinal instrumentation showed statistically improved VAS and ODI scores at the 2-year follow-up. In addition, the instrumented group exhibited better kyphosis reduction and maintenance of the corrected alignment (Fig. 9A–D).

CONCLUSION

Aforementioned data describe the various techniques that could be used to address thoracolumbar fractures with open posterior decompression and pedicle screw fixation being the most common surgical procedure employed across the world. Other forms of instrumentation are found to be equally effective, but lack of appropriate data and large randomized controlled trials to back their claims.

The surgical treatment of unstable thoracolumbar fractures is still controversial. There is no difference in functional and radiological outcomes between fusion and nonfusion surgery. Less bleeding and less surgery time are the main advantages of non-fusion surgery.

WFNS SPINE COMMITTEE RECOMMENDATIONS

- For burst fractures, a short-segment posterolateral pedicle screw fixation is sufficient in most cases.
- For burst fractures of thoracolumbar junction, incorporating the fracture level screw is preferred to increase the strength of the construct. If fracture level screw cannot be incorporated, long-segment fixation should be applied.
- When using long-segment screws, there is no evidence that fusion is needed, as there is no difference in outcome with fusion or not.
- For thoracolumbar burst fractures, anterior or posterior approach does not make a difference in clinical outcomes.
- There is inadequate evidence that surgical treatment of burst fractures of the thoracic and lumbar spine may improve clinical outcome compared to nonoperative treatment.
- Minimally invasive techniques may be considered in the treatment of thoracolumbar burst fractures as the evidence suggests equivalent clinical outcomes, compared to open technique.
- Compared to fusion surgery, nonfusion surgery for thoracolumbar burst fractures has advantages of reduced bleed-
ing, surgical time, and donor site complications.
• There is no statistical data suggesting progression of region-
al kyphosis after nonfusion surgery.

CONFLICT OF INTEREST
The authors have nothing to disclose.

REFERENCES
17. Kim CH, Hwang JK, Choi YJ, et al. Treatment of thoraco-
lumbar bursting fractures according to load-sharing classifi-
21. Chung JY, Rhym IS. Short segment transpedicular Cotrel-
23. Li K, Li Z, Ren X, et al. Effect of the percutaneous pedicle screw fixation at the fractured vertebra on the treatment of

Kyphosis After Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations

Onur Yaman1, Mehmet Zileli2, Salim Şentürk1, Kemal Paksoy1, Salman Sharif3

1Memorial Bahcelievler Spine Center, Istanbul, Turkey
2Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
3Liaquat National Hospital, Department of Neurosurgery, Karachi, Pakistan

Thoracolumbar fractures change the biomechanics of the spine. Load distribution causes kyphosis by the time. Treatment of posttraumatic kyphosis is still controversial. We reviewed the literature between 2010 and 2020 using a search with keywords “thoracolumbar fracture and kyphosis.” We removed osteoporotic fractures, ankylosing spondylitis fractures, non-English language papers, case reports, and low-quality case series. Up-to-date information on posttraumatic kyphosis management was reviewed to reach an agreement in a consensus meeting of the World Federation of Neurosurgical Societies (WFNS) Spine Committee. The first meeting was conducted in Peshawar in December 2019 with WFNS Spine Committee members’ presence and participation. The second meeting was a virtual meeting via the internet on June 12, 2020. We utilized the Delphi method to administer the questionnaire to preserve a high degree of validity. We summarized 42 papers on posttraumatic kyphosis. Surgical treatment of thoracolumbar kyphosis due to unstable burst fractures can be done via a posterior only approach. Less blood loss and reduced surgery time are the main advantages of posterior surgery. Kyphosis angle for surgical decision and fusion levels are controversial. However, global sagittal balance should be taken into consideration for the segment that has to be included. Adding an intermediate screw at the fractured level strengthens the construct.

Keywords: Thoracolumbar fracture, Kyphosis, Spine, Posttraumatic kyphosis

INTRODUCTION

Thoracolumbar fractures may significantly change the spinal biomechanics. The loss of height in the vertebral body and disruption of the posterior tension band may lead to kyphosis in the spine. As a result of the existing deformity, compensatory mechanisms try to achieve a sagittal balance. Especially, lumbar hyperlordosis is one of the effective methods for maintaining sagittal balance. However, in patients with insufficient compensatory mechanisms, a sagittal imbalance develops. The existing kyphosis progresses with the loads on the anterior column with a negative effect on sagittal balance.1,2 Secondary to kyphosis, the paraspinal muscles may stretch, which then causes inflammation and pain. With further progression of kyphosis, neurological damage occurs due to the stretching of the cauda equina fibers.2

MATERIALS AND METHODS

We reviewed the literature between 2010 and 2020 using a search with keywords “thoracolumbar fracture and kyphosis”; there were 907 results in PubMed and MEDLINE. We removed osteoporotic fractures, ankylosing spondylitis fractures, non-English language papers, case reports, and low-quality case series. Then, we analyzed 42 papers for this review. A flowchart of the literature search is shown in Fig. 1.

Up-to-date information on posttraumatic kyphosis management was reviewed to reach an agreement in a consensus meet-
ing of the World Federation of Neurosurgical Societies (WFNS) Spine Committee. The first meeting was conducted in Peshawar in December 2019 with WFNS Spine Committee members’ presence and participation. The second meeting was a virtual meeting via the internet on June 12, 2020.

Both meetings aimed to analyze a preformulated questionnaire through preliminary literature review statements based on the current evidence levels to generate recommendations through a comprehensive voting session. All voters (total 8) were spine experts and the member of the WFNS Spine Committee. Voting was done using google voting via cell phones anonymously.

We utilized the Delphi method to administer the questionnaire to preserve a high degree of validity. To generate a consensus, the levels of agreement or disagreement on each item were voted independently in a blind fashion through a Likert-type scale from 1 to 5 (1 = strongly disagree, 2 = disagree, 3 = somewhat agree, 4 = agree, 5 = strongly agree) (Table 1). Results were presented as a percentage of respondents who scored each item as 1 or 2 (disagreement) or as 3, 4, or 5 (Agreement). The consensus was achieved when the sum for disagreement or agreement was ≥ 66%. Each consensus point was clearly defined with evidence strength, recommendation grade, and consensus level provided.

RESULTS

We summarized the 42 papers on posttraumatic kyphosis in Table 2.

Table 1. Statements voted after “posttraumatic kyphosis after thoracolumbar fractures” presentation

<table>
<thead>
<tr>
<th>Statement</th>
<th>Likert-type scale</th>
<th>No. of respondents (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The most common reason of posttraumatic kyphosis is untreated, unstable burst fractures</td>
<td>1. Strongly agree 2 (25.0)</td>
<td></td>
</tr>
<tr>
<td>2. For treatment of posttraumatic kyphosis, there is no definite certain kyphosis angle to decide for surgery. Instead, global sagittal balance has to be taken in consideration</td>
<td>1. Strongly agree 2 (25.0)</td>
<td></td>
</tr>
<tr>
<td>3. Posterior surgery can achieve satisfactory kyphosis correction with less blood loss and complications</td>
<td>1. Strongly agree 2 (25.0)</td>
<td></td>
</tr>
</tbody>
</table>

1. Definition and Measurement of Kyphosis Angle

The relationship between the degree of posttraumatic kyphosis and surgical indication is not clearly defined in the literature. Some publications state that the kyphosis angle is between 20° and 40°.1,3–6 There is no universal agreement to measure this angle.

1) Cobb angle

The angle between the line drawn to the upper endplate of the above-fractured vertebra and the line drawn on the below-fractured vertebra’s lower endplate.

2) Gardner angle

The angle between the lower endplate of the fractured vertebra and the above-fractured vertebra’s endplate.

3) Vertebral compression angle

It is the angle between the upper and lower endplates of the fractured vertebra.

4) Anterior vertebral body compression percentage

The height from the anterior-upper corner to the anterior-lower corner of the vertebra is defined as anterior vertebral height (AVH), and the height from the posterior-upper corner of the vertebra to the posterior-lower corner is posterior vertebral hei-
<table>
<thead>
<tr>
<th>No.</th>
<th>Study</th>
<th>Study design</th>
<th>Evidence level</th>
<th>No of patients</th>
<th>Main target of the study</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zhang et al., 2011</td>
<td>Prospective</td>
<td>3</td>
<td>36</td>
<td>Posterior closing osteotomy</td>
<td>Posterior closing osteotomy has less blood and less complications</td>
</tr>
<tr>
<td>2</td>
<td>Curfs et al., 2016</td>
<td>Retrospective</td>
<td>4</td>
<td>104</td>
<td>Radiographic analysis of posttraumatic kyphosis</td>
<td>AO type A3 fractures have risk of progression of kyphosis</td>
</tr>
<tr>
<td>3</td>
<td>Jiang et al., 2012</td>
<td>Retrospective</td>
<td>4</td>
<td>35</td>
<td>Reliability of the measurement of kyphosis</td>
<td>Cobb angle is the most consistent in terms of reliabilities in the assessment of thoracolumbar burst fracture kyphosis</td>
</tr>
<tr>
<td>4</td>
<td>Kim et al., 2014</td>
<td>Retrospective</td>
<td>4</td>
<td>42</td>
<td>Predictive factors for kyphosis after short-segment fixation</td>
<td>The short-segment pedicle screw fixation technique is an effective surgical method for the restoration and preservation of vertebral column stability in thoracolumbar burst fractures</td>
</tr>
<tr>
<td>5</td>
<td>Kim et al., 2018</td>
<td>Retrospective</td>
<td>4</td>
<td>90</td>
<td>Comparison of lateral radiography and supine computed tomography (CT) in thoracolumbar fractures</td>
<td>A greater degree of kyphosis is observed in plain radiography than CT</td>
</tr>
<tr>
<td>6</td>
<td>Mejia-Munne et al., 2021</td>
<td>Retrospective</td>
<td>4</td>
<td>9</td>
<td>Super-pedicle osteotomy for correction of focal thoracolumbar kyphosis</td>
<td>Super-pedicle osteotomy technique was clinically useful for thoracolumbar kyphosis</td>
</tr>
<tr>
<td>7</td>
<td>Jindal et al., 2012</td>
<td>Prospective</td>
<td>3</td>
<td>50</td>
<td>Short-segment fixation, fusion</td>
<td>Adjunctive fusion is unnecessary for burst fractures of the thoracolumbar spine with short-segment pedicle screw fixation</td>
</tr>
<tr>
<td>8</td>
<td>Mayer et al., 2017</td>
<td>Retrospective</td>
<td>4</td>
<td>36</td>
<td>Posterior-only and combined postero-anterior surgery</td>
<td>Clinical consequences of T12 and L1 burst fracture patients depend on restoration of sagittal alignment</td>
</tr>
<tr>
<td>9</td>
<td>Aono et al., 2019</td>
<td>Prospective</td>
<td>3</td>
<td>76</td>
<td>Clinical and radiographic data examined to reveal the risk factors for postoperative kyphosis recurrence</td>
<td>High compromised canal ratio before surgery and a large preoperative kyphotic angle is related with correction loss</td>
</tr>
<tr>
<td>10</td>
<td>Chen et al., 2012</td>
<td>Prospective</td>
<td>3</td>
<td>36</td>
<td>Comparison of anterior and posterior approach in the surgery of thoracolumbar fractures</td>
<td>Posterior approach has less complication rate and better kyphosis correction</td>
</tr>
<tr>
<td>11</td>
<td>Zeng et al., 2013</td>
<td>Retrospective</td>
<td>4</td>
<td>34</td>
<td>Posterior surgical correction of posttraumatic kyphosis</td>
<td>The surgical success of kyphosis depends on the size of the kyphosis angle</td>
</tr>
<tr>
<td>12</td>
<td>Matsumoto et al., 2018</td>
<td>Retrospective</td>
<td>4</td>
<td>20</td>
<td>Long-segment fixation for posttraumatic kyphosis</td>
<td>The main compensatory mechanism in long-segment fixation is the reduction of lumbar lordosis</td>
</tr>
<tr>
<td>13</td>
<td>Seo et al., 2019</td>
<td>Retrospective</td>
<td>4</td>
<td>98</td>
<td>Analysis of risk factors for unfavorable radiological outcomes after posttraumatic kyphosis</td>
<td>Insufficient correction of thoracolumbar kyphosis was considered to be a major factor of an unfavorable radiological outcome</td>
</tr>
<tr>
<td>14</td>
<td>Shi et al., 2011</td>
<td>Retrospective</td>
<td>4</td>
<td>52</td>
<td>The influence of correction loss in thoracolumbar fractures treated by posterior instrumentation</td>
<td>Restoring anterior vertebra height with posterior instrumentation positively affects clinical recovery</td>
</tr>
<tr>
<td>15</td>
<td>Sadatsune et al., 2015</td>
<td>Retrospective</td>
<td>4</td>
<td>27</td>
<td>The effect of residual kyphosis after surgery on quality of life</td>
<td>There is no correlation between the final clinical result and residual kyphosis in patients with thoracolumbar burst fractures who undergo surgical treatment</td>
</tr>
<tr>
<td>16</td>
<td>Chen et al., 2014</td>
<td>Prospective</td>
<td>3</td>
<td>28</td>
<td>Anterior column support with short-segment posterior instrumentation</td>
<td>Excellent reduction and maintenance of thoracolumbar burst fractures can be achieved with short-segment pedicle instrumentation supplemented with anterior column reconstruction and intermediate screws</td>
</tr>
</tbody>
</table>
Table 2. Summary of the reviewed papers (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Study</th>
<th>Study design</th>
<th>Evidence level</th>
<th>No of patients</th>
<th>Main target of the study</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Chen et al., 2016</td>
<td>Retrospective</td>
<td>4</td>
<td>122</td>
<td>Risk factors of kyphosis recurrence after implant removal in thoracolumbar burst fractures following posterior short-segment fixation</td>
<td>Short-segment fixation is an effective method. The loss of correction at follow-up after implant removal associated with age and height of the anterior vertebra</td>
</tr>
<tr>
<td>18</td>
<td>Li et al., 2017</td>
<td>Review</td>
<td>5</td>
<td>12</td>
<td>Wedge osteotomy posterior closing osteotomy</td>
<td>Late kyphosis after thoracolumbar fractures can be treated with wedge osteotomy and posterior closing osteotomy</td>
</tr>
<tr>
<td>19</td>
<td>Xi et al., 2013</td>
<td>Retrospective</td>
<td>4</td>
<td>19</td>
<td>Posttraumatic thoracolumbar kyphosis, pedicle subtraction osteotomy</td>
<td>A single-stage posterior pedicle subtraction osteotomy is a safe and effective procedure for correction of posttraumatic thoracolumbar kyphosis</td>
</tr>
<tr>
<td>20</td>
<td>Liu et al., 2017</td>
<td>Retrospective</td>
<td>4</td>
<td>77</td>
<td>Radiological analysis of thoracolumbar junctional kyphosis</td>
<td>Maintaining sagittal balance and pelvic tilt is important for thoracolumbar junctional kyphosis</td>
</tr>
<tr>
<td>21</td>
<td>Rahman et al., 2018</td>
<td>Prospective</td>
<td>3</td>
<td>40</td>
<td>Comparison of surgery and conservative management for posttraumatic kyphosis</td>
<td>Patient selection is important for the treatment of posttraumatic kyphosis</td>
</tr>
<tr>
<td>22</td>
<td>Wood et al., 2015</td>
<td>Retrospective</td>
<td>4</td>
<td>37</td>
<td>Stable posttraumatic kyphosis: surgery vs. conservative management</td>
<td>Those with stable burst fractures treated non-operatively at long-term follow-up reported less pain and better function</td>
</tr>
<tr>
<td>23</td>
<td>Jo et al., 2015</td>
<td>Retrospective</td>
<td>4</td>
<td>13</td>
<td>Modified posterior closing wedge osteotomy</td>
<td>Modified posterior closing wedge osteotomy provided good fusion with less blood loss and fewer complications</td>
</tr>
<tr>
<td>24</td>
<td>Ituarte et al., 2019</td>
<td>Meta-analysis study</td>
<td>5</td>
<td>23</td>
<td>Meta-analysis study</td>
<td>A fixation method consisting of 2 levels above and 1 below with intermediate screws for the thoracolumbar burst fractures is successful</td>
</tr>
<tr>
<td>25</td>
<td>Avanzi et al., 2015</td>
<td>Retrospective</td>
<td>3</td>
<td>36</td>
<td>The correlation between posttraumatic kyphosis and symptoms in patients undergoing conservative treatment for thoracolumbar burst fractures</td>
<td>There is no evident correlation between residual kyphosis, functional outcome, and patients' symptoms</td>
</tr>
<tr>
<td>26</td>
<td>Formica et al., 2016</td>
<td>Prospective</td>
<td>3</td>
<td>43</td>
<td>Risk factors of segmental kyphosis after short-segment thoracolumbar fracture fixation with intermediate screws</td>
<td>Short-segment fixation with intermediate screws is a viable technique with positive clinical and radiological outcomes</td>
</tr>
<tr>
<td>27</td>
<td>Schulz et al., 2014</td>
<td>Retrospective</td>
<td>4</td>
<td>94</td>
<td>Effect of 360° instrumented fusion for kyphotic deformity and functional outcome</td>
<td>A significant inversely proportional correlation between the Hannover scores and the degrees of local kyphosis was found</td>
</tr>
<tr>
<td>28</td>
<td>El Behairy et al., 2020</td>
<td>Prospective</td>
<td>3</td>
<td>32</td>
<td>Short-segment fixation of thoracolumbar fractures with incorporated screws at the level of fracture</td>
<td>Short-segment fixation of thoracolumbar fractures with inclusion of the fracture level into the construct offers good correction of segmental kyphosis, vertebral wedging, and vertebral height loss</td>
</tr>
<tr>
<td>29</td>
<td>Radcliff et al., 2012</td>
<td>Retrospective</td>
<td>4</td>
<td>40</td>
<td>Correlation of posterior ligamentous complex Injury and neurological injury to loss of vertebral body height, kyphosis, and canal compromise</td>
<td>Translation greater than 3.5 mm was associated with PLC injury</td>
</tr>
<tr>
<td>30</td>
<td>Rojas-Tomba et al., 2017</td>
<td>Retrospective</td>
<td>4</td>
<td>40</td>
<td>Radiologic and functional outcomes in unstable thoracolumbar fractures treated with short-segment pedicle fixation</td>
<td>Unstable thoracolumbar fractures provide radiological and functional recovery with short-segment pedicle instrumentation</td>
</tr>
<tr>
<td>31</td>
<td>Martiniani et al., 2013</td>
<td>Retrospective</td>
<td>4</td>
<td>219</td>
<td>The effect of posterior alone surgery to prevent late kyphotic deformity</td>
<td>In some cases posterior fixation alone is not sufficient for long-term spinal stabilization and often can be not effective to prevent the late kyphotic deformity</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>No.</th>
<th>Study</th>
<th>Study design</th>
<th>Evidence level</th>
<th>No of patients</th>
<th>Main target of the study</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Zhang et al., 2019</td>
<td>Retrospective</td>
<td>4</td>
<td>1,465</td>
<td>Comparing intermediate screws and kyphoplasty with posterior short-segment fixation for the treatment of thoracolumbar burst fractures</td>
<td>Posterior short-segment fixation with kyphoplasty provides better back pain relief, greater anterior body height reduction, and less correction loss, while intermediate screws have the advantages of less operative time, fluoroscopic time, and blood loss</td>
</tr>
<tr>
<td>33</td>
<td>El-Sharkawi et al., 2011</td>
<td>Prospective</td>
<td>3</td>
<td>43</td>
<td>Comparing pedicle subtraction osteotomy (PSO) and anterior corpectomy and plating (ACP) for the treatment of posttraumatic kyphosis</td>
<td>2-Year follow-up. PSO seems to be equally safe but more effective than ACP</td>
</tr>
<tr>
<td>34</td>
<td>Ye et al., 2017</td>
<td>Retrospective</td>
<td>4</td>
<td>44</td>
<td>Comparing the efficacy of short-segment pedicle screw instrumentation with and without intermediate screws for treating unstable thoracolumbar fractures</td>
<td>Short-segment instrumentation with intermediate screw fixation is conducive to the correction of kyphosis and the maintenance of the reduction effects</td>
</tr>
<tr>
<td>35</td>
<td>Chokshi et al., 2019</td>
<td>Prospective</td>
<td>3</td>
<td>50</td>
<td>Clinical results of short-segment fixation and screw to fracture technique</td>
<td>Inclusion of the fracture level in short-segment fixation for thoracolumbar fracture dislocation gives good kyphosis correction and correction maintenance</td>
</tr>
<tr>
<td>36</td>
<td>Dobran et al., 2016</td>
<td>Retrospective</td>
<td>4</td>
<td>60</td>
<td>Comparing short-segment pedicle fixation with inclusion of the fracture level and long-segment instrumentation</td>
<td>Inclusion of fracture level in a short-segment fixation for a thoracolumbar junction fractures results in a kyphosis correction and in a maintenance of the sagittal alignment similar to a long-segment instrumentation</td>
</tr>
<tr>
<td>37</td>
<td>Aono et al., 2016</td>
<td>Prospective</td>
<td>3</td>
<td>27</td>
<td>Surgical outcomes of temporary short-segment instrumentation without augmentation for thoracolumbar burst fractures</td>
<td>Temporary short-segment fixation without augmentation yielded satisfactory results in reduction and maintenance of fractured vertebrae, and maintenance was independent of load-sharing classification</td>
</tr>
<tr>
<td>38</td>
<td>Khare and Sharma, 2013</td>
<td>Prospective</td>
<td>3</td>
<td>25</td>
<td>Surgical outcome of posterior short-segment transpedicle screw fixation for thoracolumbar fractures</td>
<td>Short-segment transpedicle posterior fixation is helpful for not only stabilization of the fractures and restoration of anatomy, but also maintaining the same over a period with good functional outcome</td>
</tr>
<tr>
<td>39</td>
<td>Kanna et al., 2015</td>
<td>Retrospective</td>
<td>4</td>
<td>32</td>
<td>Posterior fixation including the fractured vertebra</td>
<td>Posterior fixation including the fractured vertebra has biomechanical advantages over conventional short-segment fixation</td>
</tr>
<tr>
<td>40</td>
<td>Aono et al., 2017</td>
<td>Prospective</td>
<td>3</td>
<td>62</td>
<td>Thoracolumbar burst fracture who underwent short-segment posterior instrumentation using ligamentotaxis with Schanz screws with or without vertebroplasty</td>
<td>Short-segment posterior instrumentation and vertebroplasty is an effective method</td>
</tr>
<tr>
<td>41</td>
<td>Vu et al., 2015</td>
<td>Retrospective</td>
<td>4</td>
<td>31</td>
<td>Radiological outcome of short-segment posterior instrumentation and fusion for thoracolumbar burst fractures</td>
<td>Kyphotic impairment is greater after short-segment posterior instrumentation</td>
</tr>
<tr>
<td>42</td>
<td>Ökten et al., 2015</td>
<td>Retrospective</td>
<td>4</td>
<td>70</td>
<td>Results of treatment of unstable thoracolumbar burst fractures using pedicle instrumentation with and without fracture level screws</td>
<td>Short-segment stabilization in thoracolumbar burst fractures with additional screws at the level of the fracture results in an improved kyphosis correction, sagittal index, and compression ratio of the anterior vertebral height</td>
</tr>
</tbody>
</table>
ght (PVH). Anterior vertebral body compression has been defined as the ratio of AVH to PVH.7,8

5) Sagittal index
Local kyphotic deformity minus baseline sagittal curve at the level of the fracture (Baseline sagittal curve is 5° in the thoracic spine segments, 0° at the thoracolumbar junction).4,9,10

2. Biomechanical Factors
Kyphosis developing in any part of the spine causes compression of the vertebral body due to gravity force-the height loss of the vertebra increases due to gravity forces. Kyphosis may increase progressively as the line of gravity shifts forward. It is well known that the posterior tension band is also under the influence of higher forces with the effect of kyphosis. The length and tension of the paraspinal muscle cause fatigue and inflammation.

The segments above and below the fractured vertebra compensate to maintain sagittal balance by increasing lordosis. Compensatory mechanisms that aim to balance the regional deformity have a negative impact on clinical outcomes.11,12 Facet joints have no load at flexion. It bears only 1/3rd of loads at extension. With hyperlordosis, the load on the facet joints at that segment and also in adjacent segments increases. Compression in the spinal canal increases with facet hypertrophy.13-15

3. Risk Factors for Kyphosis Development
Disc injury during trauma increases disc degeneration. It is known that disc degeneration and loss of disc height increase the development of kyphosis.4,16,17 Shi et al.18 mentioned that patients with thoracolumbar fracture had a loss of height in the fractured vertebra’s upper disc. They reported that the loss of upper disc height also caused loss of postoperative kyphosis correction angle.

Osteoporosis is one of the main factors that increase posttraumatic kyphosis. The low quality of bone is unable to resist the vertebra’s loads and causes vertebral body height loss.19 Failure to correct kyphosis during surgery, inability to increase the fractured vertebra’s height, and failure to maintain sagittal balance after surgery are other important risk factors that will reduce postoperative kyphosis correction angles.14,17,20-23 Compression fractures may cause local kyphosis. Kyphosis above 20° may cause a positive sagittal imbalance in the clinical follow-up.22,24 Fractures that affect 3 columns, such as burst fractures, are more likely to progress to kyphosis. Especially thoracolumbar junction fractures are at risk to developing kyphosis.25,26 It is known that untreated unstable burst fractures cause kyphotic deformity.27 Short fixation levels, only posterior surgery, pseudoarthrosis, previous laminectomy are other reasons that increase the risk of developing kyphosis.14,28 Curfs et al.3 reported that the AO type A3 fractures, fractures at T12–L1 level, and elderly patients are the risk factors that cause kyphosis. Schalke et al. published an article stating that patients with AO type A3 are more likely to develop kyphosis than A1. Mainly, posterior ligament complex (PLC) injury is one of the risk factors for development of kyphosis (Table 3).3,7,29,30

4. Symptoms
Pain is the most common symptom of posttraumatic kyphosis. The distribution of the loads on the spine changes after trauma. Pain increases due to the increased loading forces on the vertebral body and increased posterior tension forces. There is no relationship between the degree of kyphosis and the severity of pain.14,30-34 Secondary lumbar hyperlordosis is related to back pain.15,24 Adjacent segment disease occurs with the disc’s degeneration in the upper and lower parts of the fractured vertebra. A progressive neurological deficit may occur due to the direct compression of the bone structures or the narrowing of the spinal canal due to the facet joint hypertrophy.4,16,21,28,35 Radcliff et al.36 reported that translation greater than 3.5 mm is found related to injury of the PLC and neurological injury.

Syringomyelia that occurs after trauma is another factor that increases the neurological deficit. Syrinx may develop in approximately 25% of trauma cases. Neurological deficit usually progresses slowly due to syrinx.11,37

5. Surgical Indications for Posttraumatic Kyphosis
Patients with a kyphotic angle below 20°, less pain, and no

<table>
<thead>
<tr>
<th>Table 3. Risk factors for kyphosis development after trauma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk factors</td>
</tr>
<tr>
<td>≥ 50 years old</td>
</tr>
<tr>
<td>Osteoporosis</td>
</tr>
<tr>
<td>Disc injury above the fractured vertebra</td>
</tr>
<tr>
<td>3 column fractures</td>
</tr>
<tr>
<td>Fractures at T12–L1 level</td>
</tr>
<tr>
<td>AO type A3 fractures</td>
</tr>
<tr>
<td>Posterior ligament complex injury</td>
</tr>
<tr>
<td>Short fixation levels</td>
</tr>
<tr>
<td>Posterior only surgery</td>
</tr>
<tr>
<td>Previous laminectomy</td>
</tr>
</tbody>
</table>

https://doi.org/10.14245/ns.2142340.170
neurological deficits and Thoracolumbar Injury Classification and Severity Score (TLISS) less than 3 can be treated conservatively.30,31 Wood et al.27 have compared the stable burst fractures that were treated conservatively and surgically. They have found that stable burst fractures have less pain and better functional outcomes.

Surgical treatment should be considered in patients whose complaints do not regress with conservative treatment. Surgery should also be considered in patients with progressive neurological deficits, progressive kyphosis, and pain. In old thoracolumbar fractures that kyphosis cannot be corrected in the first surgery, kyphosis may increase in the following periods due to pseudoarthrosis.2,23,30,38

Patients with TLISS \(\geq 5 \), vertebral body height loss of more than 40\%, kyphosis angle more than 20\%, and canal stenosis more than 50\% are candidates for surgery (Table 4).32,34,39

Table 4. Surgical indications for posttraumatic kyphosis

<table>
<thead>
<tr>
<th>Surgical indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progressive neurological deficit</td>
</tr>
<tr>
<td>Progressive kyphosis</td>
</tr>
<tr>
<td>Thoracolumbar Injury Classification and Severity Score (\geq 5)</td>
</tr>
<tr>
<td>Vertebral body height loss > 40%</td>
</tr>
<tr>
<td>Kyphosis angle > 20%</td>
</tr>
<tr>
<td>Canal stenosis > 50%</td>
</tr>
</tbody>
</table>

6. Surgical Techniques for Posttraumatic Kyphosis

Management of thoracolumbar kyphosis is still controversial. Anterior, posterior, or combined methods are the surgical options for thoracolumbar fractures. It is difficult to compare the studies in the literature.

The primary purpose of the surgery is neurological decompression. Correcting kyphosis after neurological decompression reduces the risk of neurological damage. One of the surgery’s main goals is to stabilize the spine to resist the loads anteriorly and resist tensile forces posteriorly. Providing proper sagittal alignment while correcting focal deformity will increase the fusion rate.19,22,38,40,41 Sagittal imbalance promotes increasing pain, worse clinical outcomes, and a loss of health-related quality of life.11,39

Buchowski et al.42 defined focal kyphosis with global sagittal balance as type I. And kyphosis with global sagittal imbalance as type II. Kyphosis in the type I group can be corrected with single or multiple Smith-Peterson osteotomy (SPO) osteotomies, which shortens the posterior column. They also divided type II kyphosis into minor and major sagittal imbalances. They reported that patients in the type II group having a minor sagittal imbalance (sagittal vertical axis [SVA] less than 5 cm) could be corrected with SPO osteotomies. They also mentioned that patients with major sagittal imbalance (SVA greater than 5 cm) in type II could be corrected with pedicle subtraction osteotomy (PSO) osteotomies.2,8,28,40

Biomechanical properties of the thoracolumbar spine should be kept in mind to correct thoracic and lumbar curvature. A harmonized correction has to be improved to prevent higher loads on the thoracic spine.15,16,27,37 A correction loss of 10\(^\circ\) even after surgery has a poor functional outcome. Schulz et al. have been reported that 12\(^\circ\) T-L junction Cobb angle could be related to poor functional outcome. In their study, 5\(^\circ\) of correction loss developed even after combined surgery.15,34 Seo et al.17 have been recommended to correct thoracolumbar junction Cobb angle less than 10.5\(^\circ\). Mayer et al.11 published a study that they have treated T12 and L1 fracture with posterior and anterior-posterior combined surgery. They mentioned that patients that had a sagittal balance following the surgery had better clinical outcomes. Zeng et al.15 reported that only posterior closing osteotomies correct approximately 45\(^\circ\), whereas the anterior open-

![Fig. 2. Algorithm for the osteotomies according to posttraumatic kyphosis and sagittal balance. SPO, Smith-Peterson osteotomy; SVA, sagittal vertical axis; PSO, pedicle subtraction osteotomy.](https://doi.org/10.14245/ns.2142340.170)
ing and posterior closing corrects 80° of kyphosis. Algorithm for the osteotomies according to posttraumatic kyphosis and sagittal balance are shown in Fig. 2.

1) Posterior surgery

Posttraumatic kyphosis can be corrected with posterior osteotomies. With posterior osteotomies involving the anterior vertebral body, SPO and PSO can correct kyphosis without stretching the spinal cord. There are publications reporting that achieved up to 30° correction of kyphosis with PSO. The sagittal alignment can also be achieved in patients who have undergone anterior decompression with costotransversectomy. It is possible to correct kyphosis with multiple posterior closure osteotomies. Shorter surgical time, less bleeding, and fewer neurological deficits are the main advantages of this technique. However, osteotomy covering the posterior column is not appropriate for rigid curvatures in the thoracolumbar transition region, especially in the thoracolumbar transition region.

2) Anterior surgery

In thoracolumbar fractures, compression is usually anteriorly. Spinal compression can be decompressed directly via the anterior approach. Visualization and easier placement of the cage via anterior are the main advantages of this approach. Studies report that decompression via the anterior approach provides better neurological recovery in the future, and there are also papers reporting that there is no difference. Kostuik has reported that they had corrected kyphosis cases with the only anterior approach. It has been reported that, especially in patients with kyphosis, it is impossible to correct it with a posterior-only approach and without anterior support. Böhm et al. reported that the use of combined surgery in patients with posttraumatic kyphosis could lead to fusion development and alignment more easily.

Major vascular injuries, neurological injuries, graft donor site morbidity, pseudoarthrosis are the main complications of the anterior approach. Prolonged recovery and delayed rehabilitation are the disadvantages of the anterior approach. Osteoporosis is another disadvantage for anterior correction during the distraction forces. Loss of correction in time is another disadvantage of anterior surgery.

3) Combined surgery

Some authors have suggested combined surgery—the anterior approach for reconstructing the weight-bearing for anterior column and posterior short-segment instrumentation for kyphosis correction. Combined anteroposterior surgery has a higher perioperative complication rate (32%). Schulz et al. has reported that they have been operated on thoracolumbar junction fractures with circumferential instrumented fusion to improve Oswestry and Hannover Scores. A comparative study of El-Sharkawi et al. mentioned that posterior surgery with PSO is more effective for kyphosis correction than anterior correction and plating. And they believe that PSO provides better clinical outcomes.

4) Fusion levels (short or long instrumentation)

It is crucial to evaluate the global sagittal alignment in patients with focal deformity. While focal deformity can be corrected with shorter segment instrumentation, longer segment instrumentation should be used to correct the kyphosis with global sagittal imbalance. It has been reported that kyphosis is more common in patients who underwent only posterior short-segment instrumentation.

Fusion levels are controversial in the literature. Some authors recommend short fixation (one level above and one level below the fractured level). While some authors report the advantage of better correction and less kyphosis correction loss of long-segment instrumentation.

1) Short-segment instrumentation

Short fixation level can be reliable for type B fractures. Short-segment fixation has the benefit of decreased involvement of motion segments compared with long-segment instrumentation. However, short-segment instrumentation has implant failure rates ranging from 9% to 54% and progression of symptomatic kyphosis.

Especially in short-segment instrumentation, including the fractured vertebral leads to less correction loss. Biomechanical studies have shown better tension forces when fracture level is included. The screw in the fractured level acts as a push point and provides lordotic forces. Rojas-Tomba et al. have recommended short-segment instrumentation including fractured level (one level above and one level below the fractured level) for unstable thoracolumbar fractures. Biomechanical study by Norton et al. showed that using an intermediate screw with short-segment instrumentation strengthens the system. El-Hairy et al. offered short-segment fixation of thoracolumbar fractures including the fracture to get a good correction of segmental kyphosis, vertebral wedging, and vertebral height loss. Segmental fixation with the fracture level increased the construct stiffness and protected the fractured vertebral body from ante-
rior loads. Intermediate (screw at the fractured vertebra) provides anatomical continuity and increases construct stiffness.35,52

With a pedicle fracture, including the fractured vertebra in the construct is relatively contraindicated. In this situation, Kan na et al. recommended inserting one screw on the fractured vertebra’s nonfractured pedicle will be enough.9,10,53 According to Jindal et al., screw at the fractured vertebra increases short-segment instrumentation strength without anterior reconstruction.9,10,33,45

Additional vertebroplasty provides supplemental load-sharing through anterior reconstruction.20 Chen et al.20 also recommended a bilateral intermediate screw (screw at the fractured level) to strengthen the fixation. Zhang et al.2,39 have compared kyphoplasty and intermediate screws in posterior short-segment instrumentation for thoracolumbar fractures. According to their study, they have found that the kyphoplasty group has more significant anterior body height reduction and less loss of correction. Posterior short-segment instrumentation group with the intermediate screw group has the advantage of less blood loss and less surgery time.

Many studies have shown that the removal of implants may be a significant risk factor for the development of kyphosis.12,51,54 High load-sharing classification score, a large postoperative vertebral body angle (VBA), and the difference between the VBA and superoinferior endplate angle are the risk factors for kyphosis recurrence.5,55,56

\textbf{(2) Long-segment instrumentation}

Posterior alone surgeries without vertebral body reconstruction have higher instrument failure and recurrence of kyphosis.17 To solve this problem, long-segment instrumentation is recommended. However, long-segment instrumentation has less preservation of spinal motion. Long-segment instrumentation for thoracolumbar fracture means stabilizing at least 2 vertebrae above and 2 vertebrae below the fracture.46

Long-segment fixation can be reliable for type C fractures.9,44 Long-segment instrumentation result in better radiological outcome of local kyphosis, sagittal index, and anterior vertebral height loss.32,32,57 Dobran compared long and short-segment instrumentation and found no difference between the 2 groups.46

Studies have shown that 50% of patients have pseudoarthrosis with short-segment instrumentation in posttraumatic kyphosis.31 The reported pseudoarthrosis rate varies from 9%–54%.1,13,31 To reduce the high rate of pseudoarthrosis, screw placement in the broken segment is one of the recommended methods. Biomechanical studies have shown that screw placement in the broken segment strengthens the system.44

\textbf{CONCLUSION}

Surgical treatment of thoracolumbar kyphosis due to unstable burst fractures can be done via a posterior-only approach. Less blood loss and reduced surgery time are the main advantages of posterior surgery. Kyphosis angle for surgical decision and fusion levels are controversial. However, global sagittal balance should be taken into consideration for the segment that has to be included. Adding an intermediate screw at the fractured level strengthens the construct.

\textbf{WFNS SPINE COMMITTEE RECOMMENDATIONS}

\begin{itemize}
 \item The most common reason for posttraumatic kyphosis is untreated, unstable burst fractures.
 \item For treatment of posttraumatic kyphosis, there is no definite kyphosis angle to decide for surgery. Instead, the global sagittal balance has to be taken into consideration.
 \item Posterior surgery can achieve satisfactory kyphosis correction with less blood loss and complications.
\end{itemize}

\textbf{CONFLICT OF INTEREST}

The authors have nothing to disclose.

\textbf{REFERENCES}

5. Kim GW, Jang JW, Hur H, et al. Predictive factors for a kyphosis recurrence following short-segment pedicle screw fixation including fractured vertebral body in unstable tho-

the thoracolumbar spine: misinterpretations of the integrity of the posterior ligament complex using radiologic diagnostics. Unfallchirurg 2008;111:977-84.

Clinical and Radiological Factors Affecting Thoracolumbar Fractures Outcome: WFNS Spine Committee Recommendations

Francesco Costa1,2,*, Salman Sharif3, Abdul Hafid Bajamal4,5, Yousuf Shaikh3, Carla D. Anania1, Mehmet Zileli6

1IRCCS Humanitas Research Hospital, Milan, Italy
2Department of Biomedical Sciences, Humanitas University, Milan, Italy
3Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
4Division of Neuro-Spine, Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Airlangga, Indonesia
5Airlangga University Hospital, Surabaya, Indonesia
6Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey

To obtain a list of recommendations about clinical and radiological factors affecting outcome in thoraco-lumbar fractures with the aim of helping spine surgeons in daily practice. A systematic literature search in PubMed and Google Scholar database was done from 2010 to 2020 on the topic “thoracolumbar fracture AND radiology AND surgical outcomes” and “thoracolumbar fracture AND radiology AND surgical outcomes.” A total of 58 papers were analyzed and WFNS (World Federation of Neurosurgical Societies) Spine Committee organized 2 consensus meetings to formulate the specific recommendations the first in Peshawar in December 2019 and in a subsequent virtual meeting in June 2020 to reach an agreement. Both meetings utilized the Delphi method to analyze preliminary literature review statements based on the current evidence levels to generate recommendations through a comprehensive voting session. Eight statements were presented and reached the consensus about this topic. A variety of clinical factors is known to influence outcome of patients with thoracolumbar fractures. Some of these are well-known established factors such as blood pressure augmentation and patient age, while some are not well studied. Overall, the quality of evidence is low and we need more randomized controlled studies to validate our results. Similarly, radiological factors that can predict outcome are well stated and there is a high accordance worldwide. In reverse, still under debate is the application to choose which surgical treatment is advisable based on them.

Keywords: Clinical factors, Radiological factors, Thoracolumbar fractures, Outcome, WFNS recommendations

INTRODUCTION

Thoracolumbar region represents one of the most common fracture sites in spinal injuries. Management is still a big challenge in spine surgery. Despite tremendous improvements in spinal imaging and management techniques over the last 2 decades, there is still a lack of consensus in several areas and no standard guidelines for surgical approach, fusion levels, amount of kyphosis correction and timing of treatment and their influence on clinical outcome are present.1

As these fractures are usually treated by surgical intervention, posterior pedicle screw placement serves as the most common technique to address these fractures worldwide.2 The instrumentation serves as a tool to provide mechanical stability until the
bony union takes place. Based on these principles, postoperative recollapse of a well-reduced vertebral body or progressive kyphosis could be a lethal complication. These could increase neurological deficits, implant failure, and revision surgery.\(^4\) Unfortunately, it is quite difficult to predict recollapse or implant failure due to a magnitude of clinical and radiological factors coming into play.\(^7\) In 1994, McCormack et al.\(^4\) suggested a load-sharing classification to predict implant failure; however, the scoring system had a major limitation of not including patient-related clinical factors.

Moreover, the outcome can be influenced by many other different factors that can be divided into 2 main groups: clinical factors (such as American Spinal Injury Association [ASIA] grade at admission, preoperative neurological status, time and type of surgery, age, osteoporosis, body mass index [BMI], and major comorbidities) and radiological ones (such as fracture type - AOSpine classification, anatomic location of the injury, kyphotic deformity, etc.).\(^7\)

To deal with these issues and try to reach some globally accepted recommendations, the World Federation of Neurosurgical Societies (WFNS) Spine Committee organized a Consensus Conference on thoracolumbar fracture management. In this paper, we present the recognized factors to influence outcome with the aim of assisting physicians in their daily practice, in line with previous recommendations published by WFNS regarding some different topics in spinal surgery.

MATERIALS AND METHODS

A systematic literature search in PubMed and Google Scholar database was done from 2010 to 2020. The quality assessment and clinical relevance criteria utilized were in accordance with the Agency for Healthcare Research and Quality criteria for diagnostic studies and observational studies. Level of evidence was defined as level I to IV based on the quality of evidence developed by the U.S. Preventive Services Task Force for therapeutic interventions. Strength of evidence rate was ranked as mild, moderate, or high.

The literature research was performed using the following keywords: (1) clinical factors thoracolumbar fracture outcome, (2) thoracolumbar fracture AND radiology AND surgical outcomes.

According to the review and the specific topic, we assessed the following questions to be answered: (1) How many factors can affect outcome?; (2) Which clinical factors influence outcome?; (3) Which radiological factors can affect outcome?

This data was reviewed in a consensus meeting in Peshawar in December 2019 and then in a virtual meeting (due to limitations correlated with the coronavirus disease 2019 emergency) in June 2020 to reach an agreement. Both meetings utilized the Delphi method to administer the questionnaire to preserve a high degree of validity. To generate a consensus, the levels of agreement or disagreement on each item were voted independently in a blind fashion through a Likert-type scale from 1 to 5. The consensus was achieved when the sum for disagreement or agreement was ≥ 66%. Each consensus point was clearly defined with evidence strength, recommendation grade, and consensus level provided. The important factors are discussed below.

Based on the most significant literature, 8 statements were defined, presented, and voted.

RESULTS

With the keywords “clinical factors thoracolumbar fracture outcome” the search yielded 175 studies in Google scholar and 152 in PubMed, respectively. Some of the results were duplicated between the 2 databases. The search was further refined by excluding the duplicate articles, those not in English, or when based on animal or cadaveric subjects. The results included case reports, case series, prospective and retrospective studies, randomized studies, systematic reviews, and meta-analysis, short-listing the count to 71. After reading the abstract, only 40 articles were selected for a full review in this consensus meeting (Fig. 1).

With the keywords “thoracolumbar fracture AND radiology AND surgical outcomes” there were 526 results in PubMed and MEDLINE. A manual search resulted in 2 further articles. We removed non-English language papers, case reports, and low-quality case series. Then, we analyzed 18 papers for this review. A flowchart of the literature search is shown in Fig. 2.

Analyzing the literature, we subdivided the factors affecting outcome into 2 main groups: clinical and radiological factors.

The clinical factors recognized to predict surgical outcome are: pre-existing neurological status, timing of surgery, blood pressure, age, bone strength, BMI, smoking, and comorbidities.

While the most relevant radiological factors usually used to choose the surgical treatment and predict outcome are: vertebral body height (VBH), interspinous distance; anatomical integrity of structures such as posterior ligamentous complex (PLC), facet joints/pedicles and disc, spinal canal stenosis, displacement/dislocation of the vertebral bodies, spinal lordosis/kyphosis, and consequent deformity correction and proper re-
duction by stabilization.

Based on the most significant literature, 8 statements were defined and are summarized in Table 1. All the selected statements on this topic reached a positive consensus in both Consensus Meetings of the WFNS Spine Committee, as detailed in the following part.

DISCUSSION

Management of thoracolumbar is still a topic under debate. Not only do clinical and surgical managements present some open queries, but the definition of outcome can also be challenging. In fact, as reported by Rojas-Tomba et al., there is often a discrepancy between radiological findings/outcome and clinical outcome.

Table 1. World Federation of Neurosurgical Societies recommendations for thoracolumbar traumatic fractures

<table>
<thead>
<tr>
<th>Factors affecting surgical outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Obesity can worsen segmental kyphosis following surgery for a thoracolumbar burst fracture.</td>
</tr>
<tr>
<td>- Increasing age is a predictor of poor outcome.</td>
</tr>
<tr>
<td>- Comorbidities, smoking, and long-term high-dose steroid usage predict poor outcome.</td>
</tr>
<tr>
<td>- Polytrauma and high injury severity score should not be considered as a contraindication for early surgery.</td>
</tr>
<tr>
<td>- Anterior vertebral body height loss more than 50% may lead to progression of kyphotic deformity.</td>
</tr>
<tr>
<td>- Detection of injury of posterior ligamentous complex is important, as it significantly influences the outcome.</td>
</tr>
<tr>
<td>- Burst fractures with sagittal-transverse canal diameter ratio < 0.40 are highly associated with neurological injury and outcome.</td>
</tr>
<tr>
<td>- Cobb angle > 10.5° after surgery may predict poor outcome.</td>
</tr>
</tbody>
</table>

Fig. 1. Flow chart of a literature search of thoracolumbar fracture outcome and clinical factors. RCT, randomized controlled trials.

Fig. 2. Flowchart of the literature search we used.

https://doi.org/10.14245/ns.2142518.259
1. Clinical Factors Affecting Outcome

1) Pre-existing neurology

ASIA scoring methodology was first published in 1982 and is widely used in evaluating, treatment, and outcomes of spinal cord injuries. Most of the current studies indicate the ASIA grade at presentation is the most important factor determining the outcome. Dimar et al. in a landmark study, showed that the severity of the neurologic injury was one of the most important factors influencing the outcome, including postoperative complications and longer hospital stay. Kaminski et al. assessed the degree of functional improvement 1 year after spinal injury in 76 patients. Among factors such as age, sex, level, type of injury, comorbidities, and ASIA grade, ASIA grade was the dominant factor influencing the outcome. Over the course of years, multiple grades to assess neurology have been introduced. Irrespective of the scoring system used, the basic concept remains the same. However, ASIA grading continues to be the most commonly employed score due to easy reproducibility.

2) Timing of surgical intervention

The ideal time for a patient with a thoracolumbar fracture to undergo surgery has been a topic of long-standing debate. However, most of the current literature now suggests early surgery that is less than 72 hours may reduce hospital stay and morbidity and mortality. Bellabarba et al. performed a systematic review of literature from 1990 to 2008 and indicated that early surgery led to better outcomes with less morbidity and mortality. Similarly, Bourassa-Moreau et al. also recommended early surgery within 24 hours for spinal injuries. In a setting of associated systemic injuries, up to 72 hours of delay may be acceptable. Another important paper by Kato et al. involving many spinal surgeons like Vaccaro and Fehlings suggests early surgery in patients with thoracolumbar fractures. Although the evidence is weak, their recommendation is largely based on the results extrapolated from patients with cervical spinal injuries. Early surgical intervention has been proven to be beneficial.

3) Blood pressure

Spinal cord ischemia is believed to play a central role in the secondary injury processes that cause delayed and progressive injury to the spinal cord. The secondary injury can be aggravated by hypotension, which develops due to loss of sympathetic outflow in the thoracic region. The first guidelines regarding the management of blood pressure came in 2002. Those guidelines recommended that a mean arterial blood pressure (MAP) of 85–90 mmHg should be targeted in the first 7 days after spinal cord injury. Those guidelines are supported by a few weak level 3 studies performed in patients with cervical spine injuries. Similarly, Walters et al. also suggested that mean arterial pressure below 70 was associated with poor neurological recovery. Cohen et al. further complemented these findings. They reported a retrospective study of the relationship between episodes of hypotension noted in the medical record and outcomes using step-wise regression. They concluded that there might be a threshold of around 70 mmHg below which worse outcomes are seen. One of the major limitations to all these studies is that blood pressure augmentation was supplemented by other aggressive strategies to improve neurological recovery. These included different forms of physiotherapy and rehabilitation. Because no baseline control exists for all these patients, it is difficult to pinpoint the isolated role of blood pressure in improving overall outcomes. Such limitations were overcome by a detailed retrospective analysis conducted by Hawryluk et al. Their results showed that the beneficial effect of high blood pressure was applicable only during the first 3 days of spinal cord injury.

The majority of the patients require some vasopressor therapy to increase blood pressure, particularly when a patient is in spinal shock. The Consortium guidelines published in 2008 declared different inotropes according to the level of injury. Their recommendation was to use dopamine or norepinephrine for injuries above T6 level. However, one study demonstrated that many patients received phenylephrine at or above T6 and dopamine below T6 in conflict with the guidelines, most likely due to the preguideline patients and physician comfort with dopamine. The study also showed that dopamine was significantly associated with complications even when used according to MAP goal guidelines. De Backer et al. performed a meta-analysis of 2,768 patients in septic shock. His results showed that dopamine use was associated with high mortality. As a result, the current trend is to recommend norepinephrine as the first-line vasopressor for blood pressure augmentation.

4) Age and bone strength

Over the past decade, multiple clinical factors have been studied to identify their correlation with thoracolumbar fractures outcome. Age is the most extensively evaluated, with increasing age correlating with the poor overall outcome. A retrospective analysis of 208 patients was performed by Jang et al. in 2019. He compared various clinical variables such as BMI, smoking, age, height, and comorbid conditions. He concluded that age > 43 years was the most important clinical factor predicting implant failure or postoperative collapse of the vertebra. Sim-
ilarly, a nationwide survey was conducted by Purvis et al.25 The results showed that in patients aged > 75 years, hospital stay and complications rates were much higher in operative patients compared to the nonoperative group. Although the survey had many limitations, it was still able to highlight the importance of age while planning surgical intervention. Another study by Cankaya et al.26 highlighted the importance of age when managing elderly patients with thoracolumbar fractures. Although none of his 21 patients underwent surgery, he concluded that age > 71 years was a strong predictor of complications. Patrick conducted a retrospective review of 73 patients who underwent anterolateral fixation for thoracolumbar fractures.27 His results showed that supplemental posterior fixation was needed in patients aged more than 59 years.

Although the association of increasing age with postoperative complications has been well established, we can still not demarcate the exact limit at which complications are more likely to occur. Based on the available literature, patients aged over 45 years are at a higher risk of implant failure or revision surgery.

5) Body mass index

Increased BMI or body weight has been associated with increased risk of postsurgical infections and an overall increase in morbidity and mortality. Soroceanu et al.28 performed a retrospective review of 241 patients, of whom 66 were obese undergoing spinal deformity correction. His patients were followed up to 2 years postoperatively with periodic radiological assessment. His results showed that obese patients (BMI > 30 kg/m2) were at considerably high risk of complications and wound infections than nonobese patients. Although all patients improved after surgery, the degree of improvement was also less in the obese group than the nonobese group. These results are consistent with the results of others, including a meta-analysis by Jiang et al.29 Their study demonstrated that obesity is an independent risk factor for surgical-site infections. In patients undergoing lumbar fusion surgery, Mehta et al.30 found that the thickness of subcutaneous fat and the skin-to-lamina distance are risk factors for surgical-site infections. This is probably because thicker subcutaneous fat may require further retraction, leading to increased dead space postoperatively, which in turn increases the risk of infection. Similarly, Formica et al.31 performed short-segment posterior fixation with an intermediate screw in 43 patients with thoracolumbar fractures. His patients were followed for 1 year with periodic x-rays to assess loss of kyphosis. His results showed that loss of kyphosis correction was mostly seen in obese patients while other factors like sex and smoking did not influence the outcome.

6) Comorbid conditions/high-dose steroids

As stated previously, higher-aged patients are at greater risk of complications irrespective of the treatment modality chosen, surgical or nonsurgical. One of the major contributing factors is the presence of underlying comorbidities such as diabetes, hypertension, and ischemic heart disease, which complicates the management of a trauma patient. A prospective multicentric study was conducted by Dimar et al.19 in 2010 involving 230 patients. Factors such as neurological status at presentation, age, smoking, steroid use, and comorbidities through Charlson Comorbidity Index (CCI) were evaluated while following the patients for 6 months. An important parameter to note was that about 35% of patients were smokers. Multivariate logistic regression analysis showed that high CCI and steroid use were the most important clinically significant factors leading to untoward complications amongst all the stated factors. The CCI was first described in 1987 and is commonly used to estimate the risk of death from comorbid conditions.32 Each specific comorbidity is scored according to a weighted index to predict the cumulative effect of medical illnesses on mortality. In addition to CCI, multiple other scores have been developed to assess comorbidities, including the modified friability index and American Society of Anesthesiologists (ASA) physical status scoring system. Irrespective of the system used, all the scoring systems work similarly. A comparative analysis of all these comorbidity scoring systems was done by Ondeck et al.33 He performed a retrospective survey of 16,495 patients who underwent elective lumbar fusion. Although none of the selected patients were of trauma, his results showed that ASA physical status scoring was the most sensitive predictor of poor outcome with higher ASA physical status grades correlating with higher complications.

After a spinal cord injury, the use of steroids has been a controversial issue since the completion of the NASCIS (National Acute Spinal Cord Injury Study) studies, which demonstrated a small but significant improvement in neurologic outcomes when high doses were given intravenously immediately after spinal cord injury.34 However, historical data on the use of methylprednisolone in spinal injuries have been challenged, with more recent studies stating no benefit of steroids.35 Similarly, Chiu et al.36 used steroids in 6 of his 8 patients presenting with L1 burst fracture with conus medullaris syndrome. His results showed that steroids played no role in patient recovery, and their use was largely dictated by faith rather than objective evidence. A
survey published in 2006 revealed that most respondents continue to administer methylprednisolone, but they are motivated predominantly by fear of litigation.37

7) Smoking

The injurious effects of smoking on health are well known. A recent review summarized the results from multiple studies documenting the negative impact of smoking on the overall hospital care of surgical patients, including increased risk of perioperative complications, morbidity, mortality, and admission to the intensive care unit in patients undergoing general surgery.38 The complications associated with smoking include wound infections, delayed wound healing, pneumonia, and myocardial infarction.39 Smoking has similar adverse effects in patients with spinal injuries and is known to impair the fusion process significantly in patients undergoing spinal fixations. A cross-sectional analysis of 136,511 patients with spinal diseases was performed by Bisson et al.40 over 5 years. Ten percent of his patients were smokers. His results showed that smoking patients admitted for spinal disease in the sample had worse outcomes, increased complications, and higher costs than their non-smoking counterparts. Similarly, Berman et al.41 showed that smoking significantly increases the risk of pseudoarthrosis for patients undergoing both lumbar and cervical fusions. In addition to nonunion, smoking also increases the risk of other perioperative complications such as infection and adjacent-segment pathology.

However, Dimar et al.10 in their prospective study, were unable to document any deleterious effects of smoking in the management of patients with thoracolumbar fractures. Similarly, Kuo et al.42 performed spinal surgery including fixations in 306 patients. Thirty-four patients were smokers, and all patients were clinically and radiologically followed for 2 years. His results did not show any significant increase in complications or pseudoarthrosis among smokers compared to nonsmokers. On the contrary, Antoni et al.43 performed anterior cage placement

<table>
<thead>
<tr>
<th>Study</th>
<th>Factors</th>
<th>Patient sample</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimar et al.,10 (2010)</td>
<td>Pre-existing neurology</td>
<td>230</td>
<td>The severity of neurologic injury independently increases the risk of having a major complication following surgical stabilization of thoracolumbar spine fractures</td>
</tr>
<tr>
<td>Kaminski et al.,11 (2017)</td>
<td>Pre-existing neurology</td>
<td>76</td>
<td>The severity of neurological injury correlates with the outcome</td>
</tr>
<tr>
<td>Cohen et al.,19 (2010)</td>
<td>Blood pressure</td>
<td>74</td>
<td>Average MAP may only relate to neurological outcome in the first 2–3 days after injury</td>
</tr>
<tr>
<td>Casha et al.,17 (2011)</td>
<td>Blood pressure</td>
<td>Meta-analysis of 25 articles</td>
<td>There is weak evidence supporting the maintenance of MAP > 85 mmHg for a period extending up to 1 week following SCI.</td>
</tr>
<tr>
<td>Kato et al.,14 (2017)</td>
<td>Timing of surgery</td>
<td>Literature review</td>
<td>Early surgery is likely to reduce complications</td>
</tr>
<tr>
<td>Bourassa-Moreau et al.,13 (2013)</td>
<td>Timing of surgery</td>
<td>53</td>
<td>Surgical decompression within 24 hours in SCI may optimize neurological recovery</td>
</tr>
<tr>
<td>Bisson et al.,40 (2015)</td>
<td>Smoking</td>
<td>136,511</td>
<td>Smoking patients admitted for spinal disease in the sample had worse outcomes, increased complications, and higher costs</td>
</tr>
<tr>
<td>Antoni et al.,41 (2015)</td>
<td>Smoking</td>
<td>106</td>
<td>Smoking increases the risk of pseudoarthrosis</td>
</tr>
<tr>
<td>Dimar et al.,10 (2010)</td>
<td>Comorbid/s/teroids</td>
<td>230</td>
<td>Comorbidities and use of the high-dose steroids independently increase the risk of having a major complication following surgical stabilization of thoracolumbar spine fractures</td>
</tr>
<tr>
<td>Schroeder et al.,35 (2014)</td>
<td>Comorbid/s/teroids</td>
<td>43</td>
<td>No obvious benefit of steroids shown with increased complications</td>
</tr>
<tr>
<td>Soroceanu et al.,28 (2015)</td>
<td>BMI</td>
<td>241</td>
<td>Obesity and previous neurological symptoms may significantly increase the risk of morbidity</td>
</tr>
<tr>
<td>Jiang et al.,29 (2014)</td>
<td>BMI</td>
<td>97,326</td>
<td>Obesity seemed to be associated with a higher risk of surgical-site infection</td>
</tr>
<tr>
<td>Jang et al.,34 (2018)</td>
<td>Age</td>
<td>208</td>
<td>Age > 43 years is an independent risk factor for recollapse after posterior instrumentation</td>
</tr>
<tr>
<td>Hitchon et al.,37 (2014)</td>
<td>Age</td>
<td>73</td>
<td>Age was the only significant risk factor predicting supplemental posterior instrumentation</td>
</tr>
</tbody>
</table>

MAP, mean arterial blood pressure; BMI, body mass index; SCI, spinal cord injury.
in 106 patients with thoracolumbar fractures. His results showed a higher rate of pseudoarthrosis among smokers compared to nonsmokers. The effects of smoking in delaying fusion and pseudoarthrosis are well known. However, such pseudoarthrosis does not always translate into clinical symptomatology. Since the current literature shows no benefit of fusion versus non-fusion surgery in thoracolumbar fractures, it might explain the paucity of data correlating smoking with adverse outcomes in patients with thoracolumbar fractures (Table 2).

2. Radiological Factors Affecting Outcome

1) Vertebral body height

This parameter can be studied by x-ray and detailed with a computed tomography (CT) scan. It is an important parameter because a VBH loss > 50% with kyphotic deformity influence both type of surgical treatment and outcome in terms of postoperative disability and pain. It can be suspected on plain x-ray but should be characterized by CT scan. Significant interspinous distance increase can relate with pure osseous failure of the posterior tension band.

Radiological signs such as vertebral translation > 3.5 mm or interspinous distance variations > 20% of widening (up to 7 mm can be considered normal) are both suggestive of an unstable fracture that requires surgical treatment (Fig. 4A, B).

3) Facet joints/pedicles

The first-line x-ray can detect facet joint luxation but to better characterize facet joints and pedicles situation CT and magnetic resonance imaging (MRI) scans are necessary. The pres-

Fig. 3. Computed tomography scan that shows fracture of L2 vertebrae with loss of height.

Fig. 4. (A) The figure shows the increment in interspinous distance suggestive for posterior ligamentous complex (PLC) injury. (B) Arrow showing PLC injury at magnetic resonance imaging scan.
ence of facet joint-pedicle complex subluxation-dislocation-fracture uni- or bilateral is an important factor that can predict outcome, in terms of risk of fracture progression without adequate correction, and to shift for a surgical treatment and which type of surgical treatment.49

4) Intervertebral disc space
This parameter can be detected on x-ray in terms of narrowing of the discal space and coronal and sagittal displacement, but an MRI scan is necessary to characterize it. It is important because a discal injury is advisable of instable fractures and requires surgical treatment47,50,51 (Fig. 5).

5) Displacement - dislocation
The presence of spinal displacement or dislocation in coronal, sagittal, and axial planes is advisable of highly unstable thoracolumbar fracture because it implies the affection of all the spinal columns. Its presence requires surgical treatment and is highly suggestive for severe neurological deficits. Its presence negatively affects clinical and radiological outcome.52

6) Spinal canal diameter
Another important factor that can influence outcome is the

Fig. 5. Sagittal view of thoracolumbar segment with interspinous distances. Panels A and C indicate normal interspinous distance and panel B indicates augmented interspinous distance suggestive for fracture.

Fig. 6. (A) Favorable correction, (B) Cobb angle > 10.5° unfavorable correction.
neurological damage varies between vertebral levels. Nevertheless, a sagittal-transverse diameter ratio <0.40 is highly associated to neurological injury and requires surgical intervention to decompress neurological structures.53

7) Spinal lordosis

Lastly, spinal lordosis should be evaluated. Insufficient correction leads to late progression of kyphosis, the return to the normal range of thoracolumbar curvature is necessary to avoid additional excessive loading to the spine, which might be another secondary complication with chronic pain and disability.54

The usual target of correction is Cobb angle <7° for the reasonable functional outcome.55

Correction loss at the follow-up (Cobb ≥ 20°) has a strong correlation with severe back pain and postoperative disability.56

Seo et al.56 correlates insufficient correction to late progression of kyphosis (Cobb angle > 10.5°) immediately after surgery with unfavorable radiological outcome, which is related to a poor clinical outcome (Fig. 6A, B).

CONCLUSIONS

A variety of clinical factors is known to influence outcome of patients with thoracolumbar fractures. Some of these are well-known established factors such as blood pressure augmentation and patient age, while some are not well studied. Overall, the quality of evidence is low and we need more randomized controlled studies to validate our results.

On the other hand, radiological factors that can predict outcome are well stated and there is a high accordance worldwide. In reverse, still under debate is the application to choose which surgical treatment is advisable based on them.

WFNS SPINE COMMITTEE RECOMMENDATIONS

Based on the presented literature and personal experience, the Steering Committee voted the following statements with a positive consensus and they were converted to recommendations.

- Obesity can worsen segmental kyphosis following surgery for a thoracolumbar burst fracture.
- Increasing age is a predictor of poor outcome.
- Comorbidities, smoking, and long-term high-dose steroid usage predict poor outcome.
- Polytrauma and high injury severity score should not be considered as a contraindication for early surgery.
- Anterior VBH loss more than 50% may lead to progression of kyphotic deformity.
- Detection of injury of posterior ligamentous complex is important, as it significantly influences the outcome.
- Burst fractures with sagittal-transverse canal diameter ratio <0.40 are highly associated with neurological injury and worse outcome.
- Cobb angle >10.5° after surgery may predict poor outcome.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

33. Ondek NT, Bohl DD, Bovonratwet P, et al. Discriminative ability of commonly used indices to predict adverse outcomes after poster lumbar fusion: a comparison of demographics, ASA, the modified Charlson Comorbidity Index, and the modified Frailty Index. Spine J 2018;18:44-52.

Incidence and Epidemiology of Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations

Mehmet Zileli¹, Salman Sharif², Maurizio Fornari³

¹Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
²Liaquat National Hospital & Medical College, Karachi, Pakistan
³Humanitas University and Research Hospital in Neurosurgery, Milan, Italy

This review aims to search the epidemiology and incidence rates of thoracolumbar spine fractures. A systematic review of the literature of the last 10 years gave 586 results with “incidence,” and 387 results with “epidemiology,” of which 39 papers were analyzed. The review results were discussed and voted in 2 consensus meetings of the WFNS (World Federation of Neurosurgical Societies) Spine Committee. Out of 39 studies, 15 studies have focused on thoracolumbar trauma, remaining 24 studies have looked at all spine trauma. Most were retrospective in nature; few were prospective and multicenter. Some studies have focused on specific injuries. The annual incidence of TL fractures is about 30/100,000 inhabitants including osteoporotic fractures. There is a trend to increase the fractures in elderly population especially in developed countries, while an increase of motor vehicle accidents in developing countries. The mortality rate among male elderly patients is relatively high. The incidence of thoracolumbar spine fractures is increasing because of low-velocity falls in the elderly population. The main reasons are falls and traffic accidents. Learning the regional differences and some special forms of trauma such as extreme sports, war, and gunshot injuries will help the prevention of the thoracolumbar spine fractures.

Keywords: Thoracolumbar spine fracture, Epidemiology, Osteoporotic fracture, Spinal fusion, Nonfusion surgery

INTRODUCTION

Thoracolumbar spine trauma can have significant affect to the quality of life with neurologic deficits, pain, and deformity. The incidence and epidemiology of thoracolumbar spine trauma would help to develop preventive strategies. This review has focused on this issue by searching the last 10-year literature, reporting evidence on this issue, and giving the recommendations of the World Federation of Neurosurgical Societies (WFNS) Spine Committee after 2 consensus meetings.

MATERIALS AND METHODS

The literature between 2010 and 2020 was reviewed using a search with keywords “thoracolumbar fracture and incidence”; there were 586 results in PubMed and MEDLINE. A similar search, “thoracolumbar trauma and epidemiology,” had 387 results. We removed non-English language papers, case reports, and low-quality case series. Then, we analyzed 39 papers for this review.

Up-to-date information on thoracolumbar trauma incidence or epidemiology was reviewed to reach an agreement in a consensus meeting of the WFNS Spine Committee. The first meet-
ing was conducted in Peshawar in December 2019 with WFNS Spine Committee members’ presence and participation. The second meeting was a virtual meeting via the internet on June 12, 2020.

Both meetings aimed to analyze a preformulated questionnaire through preliminary literature review statements based on the current evidence levels to generate recommendations through a comprehensive voting session.

We utilized the Delphi method to administer the questionnaire to preserve a high degree of validity. To generate a consensus, the levels of agreement or disagreement on each item were voted independently in a blind fashion through a Likert-type scale from 1 to 5 (1 = strongly disagree, 2 = disagree, 3 = somewhat agree, 4 = agree, 5 = strongly agree). Results were presented as a percentage of respondents who scored each item as 1 or 2 (disagreement) or as 3, 4, or 5 (agreement). The consensus was achieved when the sum for disagreement or agreement was ≥ 66%. Each consensus point was clearly defined with evidence strength, recommendation grade, and consensus level provided.

RESULTS

There were 39 studies. Fifteen studies have focused on thoracolumbar trauma, remaining 24 studies have looked at all spine. Some studies focused on specific injuries such as war-combat injury, penetrating injury, extreme sports, fall from a tree, water sports, child abuse, etc.

Most were retrospective in nature; few were prospective and multicenter; there were also systematic reviews and meta-analyses (Table 1).

DISCUSSION

1. General Epidemiological Features

One prospective multicenter study (Germany and Austria) of the Spine Study Group of the German Association of Trauma Surgery contained 733 patients. The paper was focused on surgical approaches collected for 2 years interval. Conservatively treated patients were excluded. The etiology included falls from a height (225), motor vehicle accidents (173), and simple falls (116).

Doud et al. used United States (US) databases in different time intervals; NTDB (National Trauma Databank), NASS (National Automotive Sampling System), and NIS (National Inpatient Sample) collected. The retrospective review had approximately 40,000 patients. The study aimed to determine if the incidence of thoracolumbar spine injuries increased in the US from 1998 to 2011.

They reported that while motor vehicle crash-related injuries are declining in general, the incidence of thoracolumbar injury is not reducing. This may be due to the immediate use of whole-body computed tomography (CT) scans after trauma and sensitive screening and may also be related to the increasing use of seatbelts.

An extensive retrospective series comes from Sweden, including 13,496 patients. The authors gathered Swedish Hospital Discharge Registry from 1997 to 2010. They included all fractures, including osteoporotic fractures. Men were in the majority (62%), and the annual incidence of thoracolumbar (TL) fractures was 30 per 100,000 inhabitants. The most frequent etiology was traffic accidents (38.7%) and fell from heights (23.8%).

That Swedish registry did not document if the patient had osteoporosis. Patients 60 years or older were two-thirds of the study population (66%), and two-thirds were women (68%). More than half of the patients were 80 years or older, and the majority had lumbar vertebral fractures. However, they conclude that the incidence did not change considerably during the study period. The annual incidence was 13 per 100,000 in the age of < 60 years. Operated patients were 15% of all patients, most frequent in 20–39 years of age. Among elderly patients (> 60 years), operation proportion was 2%.

A systematic review from the US between 2005–2011 included 12 studies to update practice management guidelines of “The Eastern Association for the Surgery of Trauma.” From 2007 to 2011, the screening of blunt trauma patients changed the multidetector CT scans as a screening modality of choice. Patients without altered mentation or effective mechanism may be excluded by clinical examination without imaging. Patients with gross neurologic deficits or clinical examination findings with negative imaging are considered for magnetic resonance imaging.

In another study by Shah et al. from the US using a national database including more than 39,000 lumbar fractures between 2007–2016, showed that lumbar spine fractures have doubled. The majority of the fractures were between ages 80–89 and were more often in females. Falls were the most common cause of lumbar spine injuries.

The conservative treatment of traumatic thoracolumbar vertebral fractures is often not clearly defined. A systematic review of 35 papers has concluded that the choice of a conservative or operative treatment strategy is based on the primary stability of the fracture, the degree of deformity, the presence or absence of
Table 1. Summary of the 39 papers searched in this review

<table>
<thead>
<tr>
<th>No.</th>
<th>Study</th>
<th>Category</th>
<th>Location of study</th>
<th>Design of study</th>
<th>Period of study</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reinhold et al., 1 (2010)</td>
<td>Thoracolumbar</td>
<td>Germany, Austria</td>
<td>Prospective, multicenter</td>
<td>2002–2003</td>
<td>733</td>
</tr>
<tr>
<td>5</td>
<td>Spieg et al., 5 (2018)</td>
<td>Thoracolumbar</td>
<td>All world</td>
<td>Systematic review</td>
<td>Till 2018</td>
<td>35 Studies</td>
</tr>
<tr>
<td>6</td>
<td>Bouyer et al., 6 (2015)</td>
<td>All spine</td>
<td>Multicenter, France</td>
<td>Prospective</td>
<td>2011</td>
<td>580</td>
</tr>
<tr>
<td>7</td>
<td>Glennie et al., 7 (2015)</td>
<td>Thoracolumbar</td>
<td>Canada, USA</td>
<td>Retrospective</td>
<td>2009–2013</td>
<td>390</td>
</tr>
<tr>
<td>8</td>
<td>Marek et al., 8 (2018)</td>
<td>Thoracolumbar</td>
<td>Minnesota, USA</td>
<td>Retrospective</td>
<td>2008–2013</td>
<td>138</td>
</tr>
<tr>
<td>9</td>
<td>Oliver et al., 9 (2012)</td>
<td>All spine</td>
<td>California, USA</td>
<td>Retrospective</td>
<td>1996–2008</td>
<td>2,562</td>
</tr>
<tr>
<td>11</td>
<td>Li et al., 11 (2019)</td>
<td>Thoracolumbar</td>
<td>Tianjin, China</td>
<td>Retrospective</td>
<td>2006–2015</td>
<td>132</td>
</tr>
<tr>
<td>14</td>
<td>Aldosari et al., 14 (2019)</td>
<td>All spine</td>
<td>Saudi Arabia</td>
<td>Prospective</td>
<td>2016–2017</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>Brito et al., 15 (2011)</td>
<td>All spine</td>
<td>Sao Luis, Brazil</td>
<td>Retrospective</td>
<td>2008–2009</td>
<td>87</td>
</tr>
<tr>
<td>16</td>
<td>Yousefzadeh et al., 16 (2010)</td>
<td>All spine</td>
<td>Iran</td>
<td>Retrospective</td>
<td>2005–2006</td>
<td>245</td>
</tr>
<tr>
<td>18</td>
<td>Khurjekar et al., 18 (2015)</td>
<td>Thoracolumbar</td>
<td>India</td>
<td>Prospective</td>
<td>2009–2012</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>Chua et al., 19 (2018)</td>
<td>All spine</td>
<td>Cambodia</td>
<td>Retrospective</td>
<td>2013–2016</td>
<td>277</td>
</tr>
<tr>
<td>21</td>
<td>Dauleac et al., 21 (2019)</td>
<td>All spine</td>
<td>Lyon, France</td>
<td>Retrospective</td>
<td>2005–2016</td>
<td>73 Children</td>
</tr>
<tr>
<td>22</td>
<td>Falavigna et al., 22 (2018)</td>
<td>All spine</td>
<td>Brazil</td>
<td>Retrospective</td>
<td>Not mentioned</td>
<td>215 Children</td>
</tr>
<tr>
<td>23</td>
<td>Babu et al., 23 (2017)</td>
<td>All spine</td>
<td>Bengaluru, India</td>
<td>Retrospective</td>
<td>2002–2014</td>
<td>196 Children</td>
</tr>
<tr>
<td>24</td>
<td>Ernatz et al., 24 (2016)</td>
<td>All spine</td>
<td>Dallas, USA</td>
<td>Retrospective</td>
<td>2003–2011</td>
<td>97 Children < 10 years</td>
</tr>
<tr>
<td>26</td>
<td>Satyarthi et al., 26 (2017)</td>
<td>Thoracolumbar</td>
<td>India</td>
<td>Retrospective</td>
<td>2008–2012</td>
<td>312 Children</td>
</tr>
<tr>
<td>27</td>
<td>Mukherjee et al., 27 (2016)</td>
<td>Thoracolumbar</td>
<td>USA</td>
<td>Retrospective</td>
<td>1996–2011</td>
<td>299</td>
</tr>
<tr>
<td>28</td>
<td>Pintar et al., 28 (2012)</td>
<td>Thoracolumbar</td>
<td>USA</td>
<td>Retrospective</td>
<td>1993–2010</td>
<td>204 Traffic accidents with front crash</td>
</tr>
<tr>
<td>29</td>
<td>Beck et al., 29 (2016)</td>
<td>All spine</td>
<td>Victoria, Australia</td>
<td>Retrospective</td>
<td>2000–2010</td>
<td>29 Rear-seat occupants</td>
</tr>
<tr>
<td>30</td>
<td>Javadi and Naderi, 30 (2013)</td>
<td>All spine</td>
<td>Iran</td>
<td>Retrospective</td>
<td>2011</td>
<td>50 Fall from walnut tree</td>
</tr>
<tr>
<td>31</td>
<td>Hasler et al., 31 (2012)</td>
<td>All spine</td>
<td>Switzerland</td>
<td>Retrospective</td>
<td>2000–2009</td>
<td>89 Extreme sports</td>
</tr>
<tr>
<td>32</td>
<td>Bigdon et al., 32 (2019)</td>
<td>All spine</td>
<td>All world</td>
<td>Systematic review</td>
<td>1994–2012</td>
<td>Winter sports skiing and snowboarding</td>
</tr>
<tr>
<td>34</td>
<td>Kane et al., 34 (2015)</td>
<td>All spine</td>
<td>USA</td>
<td>Retrospective</td>
<td>2008–2010</td>
<td>60 Water sports</td>
</tr>
<tr>
<td>35</td>
<td>Jakoi et al., 35 (2015)</td>
<td>All spine</td>
<td>Systematic review</td>
<td>Meta-analysis</td>
<td>Not restricted</td>
<td>Gunshot injuries</td>
</tr>
<tr>
<td>36</td>
<td>Formby et al., 36 (2015)</td>
<td>All spine</td>
<td>USA</td>
<td>Retrospective</td>
<td>2003–2013</td>
<td>24 War Injuries</td>
</tr>
<tr>
<td>38</td>
<td>Freedman et al., 38 (2014)</td>
<td>Thoraco-lumbar</td>
<td>USA, Germany, Iraq, Afghanistan</td>
<td>Retrospective</td>
<td>2007–2010</td>
<td>65 War injuries</td>
</tr>
<tr>
<td>39</td>
<td>de Melo-Neto et al., 39 (2017)</td>
<td>All spine</td>
<td>Sao Paulo, Brazil</td>
<td>Retrospective</td>
<td>2008–2012</td>
<td>62 Elderly > 60 years</td>
</tr>
</tbody>
</table>

NTDB, National Trauma Database; NASS, National Automotive Sampling System; NIS, National Inpatient Sample.
disc injury, and the patient’s clinical state.6

2. Regional Differences

In a prospective multicenter epidemiological study from France involving 518 patients in 2011,7 67% of the fractures involved the thoracic or lumbar segment. Thirty percent of patients had multiple fractures and 28% had neurological impairment. The authors conclude that spinal trauma is still a source of significant morbidity despite progress in management (minimally invasive surgery techniques and achieving a good sagittal balance). Conserved sagittal balance appeared to be associated with better functional outcomes.

A retrospective review of data in a registry from different centers in Canada and the US collected 390 patients with thoracic and lumbar fractures.8 Etiology was falls from height (39.5%), sports (28.0%), and traffic accidents (27.2%). The neurologic deficit was presented in 140 patients (36%). Operative treatment was applied in 276 patients (70.8%). Adverse events in surgical cases were observed in more than half of the patients, and neurologic injury was an important predictor of adverse events.

Marek et al.9 have searched the long-term outcomes of traumatic thoracolumbar spine fractures, specifically addressing quality of life, chronic pain, and employment. They collected 138 patients between 2008 and 2013. In general, patients without neurologic deficits were generally able to return to work and had a good quality of life.

A retrospective review from Los Angeles, US, for 13 years (1996 minimally invasive surgery 2008) was done to see if there is any change in epidemiology.10 They found that the mortality rate due to spinal injury, the incidence rate of spinal cord injury (SCI), and motor vehicle accidents decreased significantly over the study period. However, they reported spinal injuries are increasing with increasing age. There was a reduction in mortality attributable to spinal injury. Decline in SCI due to motor vehicle accidents is related to improvements in motor vehicle safety and traffic regulations.10

A meta-analysis from 2016 containing 21 studies reported the rate of thoracolumbar fractures in blunt trauma patients as 6.9%.11 It included whole spine injuries. The most common vertebra injured was L1 at a rate of 34.40%. Etiology for TL fractures were motor vehicle collision (36.7%) and high-energy falls (31.7%).

The statements of this review are: mortality rate after a spinal injury is decreasing in developed countries. This is more with motor vehicle accidents due to improvements in motor vehicle safety and traffic regulations. However, the incidence of low-velocity falls is increasing, especially in the elderly population. The mortality rate among male elderly patients is relatively high. The most common cause of thoracolumbar fractures are falls and traffic accidents. The actual incidences and epidemiology in developing countries are not well known. The annual incidence of TL fractures is about 30 per 100,000 inhabitants, if osteoporotic fractures are also included. Vertebral fractures in children are usually multiple.11

Li et al.12 have examined the epidemiology profile of thoracolumbar junction (T11–L2) fractures in the Tianjin region of China between 2006–2015. Totally 132 cases were identified and the incidence rate was 2.4 patients per million population. The incidence ratio is increased annually. The average age became older by the time, and the rate of osteoporotic fractures increased by the time.

In a database search from China (China National Fracture Study) involving 512,187 individuals, the incidence rate for traumatic spinal fractures was 32.80 per 100,000 people.13 Fractures of the thoracolumbar vertebra (T11–L2) were the most common, followed by fractures of the lumbar vertebra (L3–5). Four independent risk factors were: aging, alcohol drinking, sleeping <7 hours per day, and having a previous fracture history.

Another epidemiological retrospective study from the Chongqing area of China has collected 3,142 patients in 10 years.14 Accidental falls and traffic accidents were the most common causes of spinal fractures (58.9% and 20.9%, respectively). The commonest area of fracture was the thoracolumbar spine (54.9%). Lumbar spinal fractures were more common in accidental fall patients. American Spinal Injury Association A injuries were more common in patients who suffered thoracic spinal fractures (15.09%) than in those with fractures in other areas of the spine.

The numbers of fall-induced and sports-related injuries increased steadily with age. These results indicate that there should be an increased concern for the consequences of fall- and sports-related injuries among the elderly.14

In a retrospective study from Saudi Arabia involving 120 patients, 85 patients had thoracolumbar spinal fractures.15 Sixty-six point six percent (n = 80) of all patients were managed conservatively, whereas the remaining 33.3% (n = 40) were managed surgically.

A retrospective study from Brazil, including 87 patients with spinal cord injury, has shown the proportion of falls from height was more significant than the number of traffic accidents.16 The most compromised segment of the spine was the thoracic (33
https://doi.org/10.14245/ns.2142418.209
cases, 37.9%), and the main etiology was traffic accidents.

An epidemiological study from Iran involving 245 cases reported the most common causes as motorcycle vehicle accidents 127 (52%) and fell 106 (43%). The most common fracture in the spine was thoracolumbar (115 patients). Forty-four patients had neurological deficits.

A prospective observational study from India focused on traumatic spinal cord injury for 8 years period collected 2,716 cases, of which 1,400 were cervical and 1,316 thoracolumbar. Around 79% of patients were from rural backgrounds (farmers and laborers). Causes of injury fell from height (53%) and road traffic accidents (28%). Complete paralysis was found in 20.5% cervical and 23.3% in thoracic injuries.

Authors have concluded that epidemiological factors of SCI in India are different from Western countries, with the primary cause being fall. The low socioeconomic status and younger age group had a significant financial, social and psychological impact as most of the patients were the immediate earning members of the family.

Another prospective study from India contained 92 patients for a 3-year interval. All were surgically treated. The main reason for the trauma was a fall from height (46 patients, 50%).

A retrospective review from Cambodia involving 277 patients, cervical trauma was 71 (25.6%), and thoracolumbar trauma was 206 patients (74.4%). Etiology was motor vehicle accidents (31.3%) and fell (51.4%). Motor vehicle accidents were mainly by motorcyclists (66.7%). Falls causing thoracolumbar trauma were predominantly work-related, including falls at construction sites (32.9%) and from palm and mango trees (34.3%).

The authors have reported that they could have similar surgical costs between $100 to $280 per surgery in a significantly resource-limited community.

3. Pediatric Injuries

In a retrospective pediatric series from Germany, including 546 patients (average age 12.8 ± 6.2 years), the leading cause of trauma was fall from height (58%). Of all series, 27% were found at T7/T8 and 17% at T12/L1. Multiple fractures are standard 53.2%. The authors have concluded that vertebral fractures in children are usually multiple and should lead to broad diagnostic coverage. Prevention should especially conceal falls and traffic accidents. Lesions for operative fixation are rare due to the excellent elasticity of the pediatric spine.

A retrospective review of pediatric patients in France between 2005 and 2016, including 73 children, with a mean age of 14.1 years, has shown that spinal injuries were more common in the teenage group (14–18 years). The etiology was motor vehicle collision (36%). Teenagers presented more with lumbar traumas, while young children had more cervical traumas. Teenagers had more fractures, while younger ages had more luxations. The authors conclude that disco-ligamentous maturation is an essential concept in spine traumas in children.

A retrospective multicenter study from Brazil of 215 spinal trauma cases in individuals < 18 years of age, showed a mean age of 14.7 years. Falls were responsible for 52% of the spinal trauma. Most were located at the thoracic level (58.7%). Neurological impairment was mostly observed due to shallow water diving and fractures between the lower cervical spine and the thoracic spine.

A retrospective review of pediatric spinal injuries over 12 years from India contained 90 children with TL spine injuries. The mean age was 159 years and the leading cause of injury was fall from height (69 cases, 71.1%), then motor vehicle accidents (18 patients, 20%). The lumbar spine was the most common injury level (53.3%). The authors concluded that TL injuries are most common in children older than 10 years old, and many involve the lumbar region.

The use of vehicular restraints has reduced the morbidity and mortality of children involved in motor vehicle collisions. The effect of restraint type was examined in a retrospective review below 10 years of age for 8-year period. Two- or 3-point seatbelt use is associated with lower rates of cervical spine trauma but higher thoracic and lumbar trauma rates, particularly flexion-distraction injuries, compared with a car or booster seat. Children in car seat/booster seat and those who were unrestrained sustain high rates of cervical spine injury.

A retrospective review of the Kids’ Inpatient Database in the US was conducted in pediatric patients below 18 years with child abuse for a 12-year interval. Among 22,192 pediatric patients diagnosed with spinal cord or vertebral column injury, 116 (0.5%) had a documented abuse diagnosis. Abused patients were more likely to be below 2 years of age, female. Abused patients had more thoracic and lumbar vertebral column fractures, and the mean length of stay was longer. Physicians should maintain a higher level of suspicion of abuse in patients with spine injuries, especially patients under 2 years of age.

Satyarthee et al. have reported 25 pediatric cases of TL fractures from India. The most common reason was fall (76%). Eleven patients (44%) had a neurologic injury.

4. Motor Vehicle Accidents

In a multicenter database called Crash Injury Research and
Engineering Network, the authors searched the incidence of neurological deficits in motor vehicle collisions. Neurological deficits were more common in pediatric ages (0–10 years, 26.7%) and geriatric ages (70–80 years, 18.4%). The highest risk of neurological injury existed in crashes in which airbags deployed and a seatbelt did not restrain the occupant. Collisions with a greater than 50 km/hr had a significantly higher risk of spinal cord injury. Current vehicle safety technologies are geared toward a normative body morphology. They need to be reevaluated for various body morphologies and torso compliances to lower the risk of neurological injury resulting from thoracolumbar fractures.

Epidemiological studies on motor vehicle accidents in Finland have stressed that seat belts and airbags have created a different environment for automotive trauma. The high-energy deaths tended to occur pretty quickly. However, the mortality rate of spine injuries is decreasing. Pintar et al. have searched US databases to find a relation between front crushes and injury patterns. There was a significantly increasing trend in thoracic and lumbar vertebral body fractures as a function of vehicle model year. Major burst type fractures occurred predominantly at T12, L1, or L5.

A retrospective review of 29 rear-seat occupants after frontal crashes in motor vehicle accidents (aged 9–80 years) from Australia and 10 years interval has reported that the seat belt was the most common source of injury to rear-seat occupants. There is a need to provide an appropriate belt fit and better control seat belt loads for rear-seat passengers.

5. Fall From Height
Falls from trees are often in some countries. A report from Iran has collected 50 cases of falls from walnut trees in one harvest season in 2011. Fractures were detected in 7 patients, including 5 cervical fracture-dislocations and 2 thoracolumbar fractures. Complete spinal cord injury was found in 8 cases. The falls from the walnut trees mainly result in cervical fractures with quadriplegia with a poor prognosis in a young group of workers.

6. Sports Injuries
Airborne sports are associated with a high frequency of severe injuries, especially to the spine. A retrospective analysis from the Swiss Alps for a 9-year period of 181 patients (11 BASE-jumpers, 144 paragliders, 19 parachuters, 1-speed flyer, 4 delta gliders, 2 skysurfers) was included. Eighty-nine patients (49.2%) sustained spinal fractures. Type A fractures were predominant (91.5%), and the most common level was L1 (35.1%). The lumbopelvic junction is especially vulnerable as high impact forces from vertical and horizontal deceleration need to be absorbed.

A systematic review of alpine winter sports and spine trauma yielded 64 studies. Skiing, snowboarding, and tobogganing are the reasons for falls. The thoracolumbar spine is the most common region for spinal injury. Spinal cord injury is relatively rare, usually with cervical spine trauma. Disc injuries seem to occur more commonly in alpine winter sports athletes than in the general population.

A study from Switzerland examined the trauma cases due to extreme sports in Swiss Alpines. A total of 616 patients rescued with helicopters for a ten-year interval (1998–2008) were examined. Two hundred nineteen (36%) were high-risk extreme sports accidents. Mortality at 48 hours was 11%, thoracolumbar vertebral fractures were the most common injuries, with at least one of 32% of all cases.

The epidemiology of water sports injuries at a coastal area in the US has collected 105 patients. Among water-based activities or recreational sport are counted swimming, surfing, boating, personal watercraft use. Personal watercrafts accounted for the majority of injuries (n = 39). Cervical (33.3%) and thoracolumbar (21.9%) injuries accounted for most injury types. Spinal cord injuries were more common than other types of trauma.

7. War and Combat Injuries
A systematic review of spinal gunshot injuries showed that the gunshot injuries are the third commonest cause of spinal injury. Surgical treatment is typically indicated for progressive neurologic changes, spinal instability, persistent cerebrospinal fluid leak, and infection. Surgical exploration and removal of missile fragments in the spinal canal are typically indicated for incomplete or worsening neurologic injury. Surgical treatment for gunshot injuries affecting T12 and caudal often has a better outcome than for those cranial to T12.

A retrospective review of combat-related burst fractures engaged in the wars in Iraq and Afghanistan has collected 24 patients of low lumbar (L3–5) burst fractures. Eleven patients had a neurological injury, 4 of which were complete.

One hundred twenty-eight spinal fractures during military deployments of the United Kingdom army between 2005–2009 were collected. Ballistic (79%) and nonballistic mechanisms contribute to vertebral fracture, a high incidence of lumbar spine fractures, which are more likely to be due to explosion than gunshot wounding. The authors concluded that due to the predominance of explosive injury in current conflicts, and the research
must be directed to this injury mechanism.40

War injuries have also been an interest of some studies. The US army collected 65 cases of explosive device assaults on up-armored vehicles during the Afghanistan and Iraq wars.41 All had thoracolumbar burst fractures, and neurological deficits were present in 43%.

8. TL Injuries in the Elderly

The incidence of low-energy falls increases, and older men have a disproportionate increase in death from spine injuries.29 The authors have commented on this gender difference, with men being less likely to accept age changes, do not use a cane or walker, and continuing activities may result in falls. Fall prevention and bone metabolism optimization must be focused not only on women but also on men in older ages.29

A retrospective study of elderly patients (> 60 years of age) with spinal cord injury included 62 elderly patients42 showed that elderly individuals with SCI have distinct characteristics and clinical factors. Women had fractures at the thoracolumbar junction, while men had cervical fractures.

CONCLUSIONS

The incidence of thoracolumbar spine fractures is increasing since the low-velocity falls in the elderly population are increasing. The epidemiology in developing countries is not well studied, but the main reasons are falls and traffic accidents. Learning the regional differences and some special forms of trauma such as extreme sports, war, and gunshot injuries will help the prevention of the thoracolumbar spine fractures.

WFNS SPINE COMMITTEE RECOMMENDATIONS

- The most common cause of thoracolumbar fractures are falls and traffic accidents.
- The annual incidence of TL fractures is about 30 per 100,000 inhabitants if osteoporotic fractures are counted together.
- The real incidences and epidemiology in developing countries are not well known.
- The incidence of low-velocity falls is increasing, especially in the elderly population.
- Mortality rate after the spinal injury is decreasing in developed countries. This is more with motor vehicle accidents due to improvements in motor vehicle safety and traffic regulations.
- The thoracolumbar trauma mortality rate among male elderly patients is relatively high.
- Vertebral fractures in children are usually multiple.

REFERENCES

41. Freedman BA, Serrano JA, Belmont PJ Jr, et al. The combat burst fracture study--results of a cohort analysis of the most
Indications for Nonsurgical Treatment of Thoracolumbar Spine Fractures: WFNS Spine Committee Recommendations

Nikolay Peev1, Mehmet Zileli2, Salman Sharif3, Shahswar Arif1,4, Zarina Brady1,4

1Department of Neurosurgery, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
2Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
3Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
4Medical University of Varna, Varna, Bulgaria

Thoracolumbar spine is the most injured spinal region in blunt trauma. Literature on the indications for nonoperative treatment of thoracolumbar fractures is conflicting. The purpose of this systematic review is to clarify the indications for nonsurgical treatment of thoracolumbar fractures. We conducted a systematic literature search between 2010 to 2020 on PubMed/MEDLINE, and Cochrane Central. Up-to-date literature on the indications for nonoperative treatment of thoracolumbar fractures was reviewed to reach an agreement in a consensus meeting of WFNS (World Federation of Neurosurgical Societies) Spine Committee. The statements were voted and reached a positive or negative consensus using the Delphi method. For all of the questions discussed, the literature search yielded 1,264 studies, from which 54 articles were selected for full-text review. Nine studies (4 trials, and 5 retrospective) evaluating 759 participants with thoracolumbar fractures who underwent nonoperative/surgery were included. Although, compression type and stable burst fractures can be managed conservatively, if there is major vertebral body damage, kyphotic angulation, neurological deficit, spinal canal compromise, surgery may be indicated. AO type B, C fractures are preferably treated surgically. Future research is necessary to tackle the relative paucity of evidence pertaining to patients with thoracolumbar fractures.

Keywords: Thoracolumbar fractures, Conservative treatment, Indications for nonoperative treatment, Compression fractures, Burst fractures, Neurological deficit

INTRODUCTION

Thoracolumbar spine fractures occur in every 7/10 blunt trauma cases and make up to 9/10 of the spinal fractures recorded.1,5 Every 1 in 4 thoracolumbar spine fracture patients have concomitant spinal cord injury.1,4 Long-term care in cases with persistent disability post thoracolumbar fractures indicates a significant burden on healthcare funding.1,2,4,6 Furthermore, such cases often have numerous visceral and bony injuries, and therapeutic decision-making can be quite demanding.6,6

For the aims of these recommendations, “thoracolumbar” includes the rigid thoracic (T1–10), transitional thoracolumbar junction (T10–L2), and flexible lumbar spine (L3–5).7 This transition from the rigid thoracic spine with its link to ribs and sternum to the more mobile lumbar spine subjects the thoracolumbar region to significant biomechanical stress.5,8

Neurological injuries quite often will further complicate the thoracolumbar junction fractures.8,10 The probability of deficit in neurological function depends on the type of fracture. In a multicentric study, the occurrence of deficit of neurological function varied from 22% to 51% depending on the fracture type (22% in type A, 28% in type B, and 51% in type C fracture, ac-
Traditional classification protocols are described based on the morphology of the fracture, trauma mechanism, deficit of the neurological function, and damage to posterior ligamentous complex (PLC). There remains an absence of agreement on a few key areas such as indications for surgery and nonsurgical treatment of thoracolumbar fractures, as well as surgical stabilization’s superiority over conservative therapy for thoracolumbar burst fractures. The World Federation of Neurosurgical Societies (WFNS), Spine Committee initiated this effort to formulate recommendations regarding the indications for surgery and nonsurgical treatment of thoracolumbar spine fractures through the published evidence and using elaborated methodology. Finally, these recommendations were formulated to improve patient care by defining the relevant literature and decision-making processes involved in the indications for surgical and nonsurgical treatment of thoracolumbar fractures. The surgical management of these patients often involves a multidisciplinary team. These recommendations were formulated as a guidance tool for surgeons through a series of indications for surgery and nonsurgical treatment of thoracolumbar spine fractures.

MATERIALS AND METHODS

The systematic review and meta-analysis was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The review followed the methods recommended by the Cochrane Handbook for Systematic Reviews of Interventions.

An international committee of spinal surgeons (members of the WFNS Spine Committee) organised a consensus meeting on the indications of surgical and nonsurgical management of thoracolumbar fractures. The meeting was conducted in Peshawar in December 2019 with WFNS Spine Committee members’ presence and participation. The meeting aimed to analyze a preformulated questionnaire through preliminary literature review statements based on the current evidence levels to generate recommendations through a comprehensive voting session.

We utilized the Delphi method to administer the questionnaire to preserve a high degree of validity. To generate a consensus, the levels of agreement or disagreement on each item were voted independently in a blind fashion through a Likert-type scale from 1 to 5 (1 = strongly disagree, 2 = disagree, 3 = somewhat agree, 4 = agree, 5 = strongly agree). Results were presented as a percentage of respondents who scored each item as 1 or 2 (disagreement) or as 3, 4, or 5 (agreement). The consensus was achieved when the sum for disagreement or agreement was ≥66%. Each consensus point was clearly defined with evidence strength, recommendation grade, and consensus level provided. The search strategy in the published protocol included studies on the indications for surgery and nonsurgical treatment of thoracolumbar spine fractures.

1. Eligibility Criteria
 Articles were considered for review if they met the following inclusion criteria:
 - Types of studies: randomized controlled trials, retrospective/prospective studies.
 - Types of participants: patients who underwent conservative treatment for thoracolumbar spine fractures.
 - Types of diagnosis: traumatic thoracolumbar spine fractures. Any osteoporotic thoracolumbar fractures were excluded.
 - Types of treatments: nonoperative treatments.
 - Outcomes: pain evaluation via visual analogue score (average VAS score), radiological features (mean kyphotic angle), loss in vertebral height (%), quality of life (36-item Short Form Health Survey [SF-36]), evaluated via physical compartment score, mental score, return to working life (days), length of hospital stay (days).

2. Search Strategy
 The electronic databases of PubMed, MEDLINE, and the CENTRAL (Cochrane Central Register of Controlled Trials), were searched from 2010 till 2020. A highly sensitive search strategy based on the Cochrane Handbook recommendations for Systematic Reviews of Interventions, combined with medical subject headings and keywords to identify potential articles, was employed. The search strategy was compiled in consultation with members of WFNS Spine Committee. In addition to the electronic database search, coauthors manually checked the list of references eligible trials and previous reviews. The complete search strategy is available.

3. Study Selection
 The coauthors initially screened titles and abstracts of all records after duplicates were removed. The full-text article for each potentially eligible article was screened.

4. Data Extraction
 The coauthors independently used a standardized data ex-
traction form to collate study characteristics (publication year, country, diagnosis [fracture type + neurological deficit], number of patients), type of intervention (nonoperative). Studies published induplicate were only included once.

RESULTS

The panel was asked to vote on the indications for nonsurgical treatment of thoracolumbar fractures. A total of 6 statements were drafted and voted in Peshawar in December 2019.

Publication date from 2010 to 2020; English language; main word search in all-fields: “thoracolumbar” “fractures” and “treatment” We obtained 1,264 articles across all databases, and after removing duplicates, we were left with 504 articles. Four hundred fifty papers (nonrelated) after abstract review by an independent double-check up were excluded. Following a full-text review of the remaining 54 studies, the authors selected 9 studies that met the inclusion criteria to draw conclusions (Fig. 1). Out of 17 studies, 4 were randomized controlled trials, and rest were retrospective.

Excluded studies included studies published in any language other than English, any case reports, animal studies, experimental studies, studies on osteoporotic thoracolumbar spine fractures, studies solely investigating surgical treatments.

Below is the review summary from those studies comparing nonoperative and operative treatment in AO type A fractures.

1. Pain (VAS Score)

Five studies reported pain outcomes through average VAS scores. Although average VAS score for nonoperative cohort (2.25) was 0.37 lower than surgery cohort (2.62), there was no significant difference in the average VAS scores between the 2 cohorts (p = 0.33).

2. Kyphotic Angle (Degrees)

Three studies reported posttreatment kyphotic angle. No statistically significant results were found between nonoperative (19.45°) and surgery (17.30°) (p = 0.8).

3. Loss of Vertebral Body Height

Four studies have reported average posttreatment loss of vertebral height. No statistically significant differences (p = 0.17) were observed between the average loss of vertebral body height for nonoperative cohort (37.72%) and the surgery cohort (20.19%).

4. Quality of Life (Physical Compartment, Mental Compartment Scores)

Five studies analyzed quality of life using the SF-36 test. No statistically significant differences were observed between nonoperative and surgery cohorts for physical compartment (56.29 vs. 63.37, p = 0.48) and mental compartment scores (59.30 vs. 63.74, p = 0.65).

5. Length of Hospital Stay

No statistically significant differences were observed between nonoperative (6.25 days) and surgery cohorts (6.09 days) for length of hospital stay (p = 0.97).

6. Return to Work

Two studies reported the time needed to return to work after treatment. No statistically significant differences (p = 0.84) were observed between nonoperative (76.6) and surgery (63.90) cohorts (Tables 1, 2).

Fig. 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the review process.

https://doi.org/10.14245/ns.2142390.195
Table 1. Clinical outcomes following nonoperative and operative treatments for AO type A thoracolumbar fractures

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Country</th>
<th>No.</th>
<th>Fracture type + neurological deficit</th>
<th>Type of treatment</th>
<th>Mean pain score (VAS)</th>
<th>Mean kyphotic angle (°)</th>
<th>Mean vertebral height loss (%)</th>
<th>Mean physical compartment score (SF-36)</th>
<th>Mean mental compartment score (SF-36)</th>
<th>Mean hospital stay (day)</th>
<th>Mean return to work (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karaali et al.</td>
<td>Retrospective</td>
<td>Turkey</td>
<td>74</td>
<td>Compression + burst fractures; No neurological deficit</td>
<td>Nonoperative vs. surgery</td>
<td>Nonoperative, 2.64; surgery, 1.91</td>
<td>Nonoperative, 35.5; surgery, 25.12</td>
<td>Nonoperative, 62.9; surgery, 21.2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pehlivanoglu et al.</td>
<td>Retrospective</td>
<td>Turkey</td>
<td>45</td>
<td>A3, A4 burst fractures; No neurological deficit</td>
<td>Nonoperative vs. surgery</td>
<td>Nonoperative, 2.3; surgery, 1.9</td>
<td>Nonoperative, 11.65; surgery, 4.09</td>
<td>Nonoperative, 12.78; surgery, 7.87</td>
<td>Nonoperative, 56.67; surgery, 56.74</td>
<td>Nonoperative, 55.5; surgery, 55.47</td>
<td>Nonoperative, 11.0; surgery, 9.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Nataraj et al.</td>
<td>Retrospective</td>
<td>Canada</td>
<td>230</td>
<td>Burst fractures + no neurological deficit</td>
<td>Nonoperative vs. surgery</td>
<td>Nonoperative, 2.9; surgery, 3.3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Urquhart et al.</td>
<td>Randomized controlled trial</td>
<td>Canada</td>
<td>96</td>
<td>A3 fractures (burst) + no neurological deficit</td>
<td>TLSO (Brace) vs. no bracing</td>
<td>N/A</td>
<td>N/A</td>
<td>TLSO, 46.5%; no bracing, 45.5%</td>
<td>TLSO, 55.8%; no bracing, 55.2%</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Hitchon et al.</td>
<td>Retrospective</td>
<td>USA</td>
<td>68</td>
<td>Burst; No deficit</td>
<td>Nonoperative vs. surgery</td>
<td>Nonoperative, 1.9; surgery, 3.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shen et al.</td>
<td>Retrospective</td>
<td>China</td>
<td>129</td>
<td>Burst + no (new) neurological deficit</td>
<td>Nonoperative vs. surgery</td>
<td>Nonoperative, 11.3; surgery, 22.7</td>
<td>Nonoperative, 29.4; surgery, 31.5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Wood et al.</td>
<td>Prospective randomised</td>
<td>USA</td>
<td>47</td>
<td>Stable burst fracture; No neurological deficit</td>
<td>Nonoperative vs. surgery</td>
<td>Nonoperative, 1.5; surgery, 3.0</td>
<td>N/A</td>
<td>Nonoperative, 89.5; surgery, 70.0</td>
<td>Nonoperative, 89.0; surgery, 72.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shamji et al.</td>
<td>Randomized controlled trial</td>
<td>Canada</td>
<td>23</td>
<td>Burst; No neurological deficit</td>
<td>Bracing (TLSO) vs. no bracing</td>
<td>N/A</td>
<td>N/A</td>
<td>TLSO, 47.6%; no bracing, 44%</td>
<td>TLSO, 51.6%; no bracing, 51.2%</td>
<td>TLSO, 43.3%; no bracing, 46.6%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bailey et al.</td>
<td>Randomized equivalence trial</td>
<td>Canada</td>
<td>47</td>
<td>Burst; No neurological deficit</td>
<td>Orthoses vs. no orthoses</td>
<td>N/A</td>
<td>N/A</td>
<td>TLSO, 39.1%; no bracing, 36.6%</td>
<td>TLSO, 52.2%; no bracing, 50.8%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

VAS, visual analogue scale; SF-36, 36-item Short Form Health Survey; NA, not available.
DISCUSSION

This review discusses guidelines and highlights the lack of high-level evidence studies regarding the indications for non-surgical versus surgical treatment of traumatic thoracolumbar spine fractures. Several spinal fracture studies contain a high level of heterogeneity in the studied populations, including the spinal levels (mixed cervical and thoracolumbar and lumbar), mechanism of trauma, anatomical classification of trauma, surgical approaches performed as well as follow-up periods.

1. Stability of the Thoracolumbar Spine Fracture

Fracture stability (comprised of mechanical and neurological stability) is a significant variable in formulating the therapeutic plan.

Denis in 1983 first classified instability into 3 subgroups, mechanical instability, neurological instability, and the combined instability. The mechanical stability of the thoracolumbar spine is analyzed based on the integrity of the bony structures and the integrity of the posterior ligament complex. On plain radiographs, reduction in the vertebral body height (50%), increased interspinous distance, and greater than 30°–35° of kyphotic deformity are indicators of injury to the posterior ligament complex. Computed tomography (CT) could be used for evaluating diathesis of facet joints. Magnetic resonance imaging is regarded as the most crucial examination in formulating the therapeutic plan for a patient with suspected PLC injury as it can analyze the PLC directly.

Neurological symptoms caused by a traumatic spinal injury can be classified with the Frankel scale or American Spinal Injury Association scale. Involvement of individual nerve root is categorized as Frankel grade E. Apart from grade E, the other grades of thoracolumbar spine fracture with a complete or incomplete deficit of neurological function due to the role of spinal canal compromise are considered unstable fractures, irrespective of the instability from fracture itself or injury to the posterior element. Despite the above, fractures accompanied with the neurological deficit are not necessarily an absolute indication for surgery. The surgical treatment is commonly conducted for cases with an incomplete neurological function deficit. It prevents further progression of neurological injury, aids in neurological recovery, and makes early mobilization possible by attaining fracture stability. However, if cases have Frankel A paralysis with complete neurological injury, the neurological exam should be conducted again after the period of spinal shock. If the neurological status is not changed on the second examination, there is a slim chance of neurological recovery expected due to decompression surgery. Hence, the treatment aims to restore spinal alignments and fracture stabilization, resulting in faster mobilization and improved rehabilitation options and results.

2. Classification of Thoracolumbar Spine Fractures

Since the first sophisticated classifications introduced by Holdsworth in 1962 and by Denis in 1983, several classification systems have been formulated to aid in better communication among physicians, determine therapeutic strategies, and analyze the prognosis. Among such classification systems, McAfee classification, AO classification, and the thoracolumbar injury classification and severity score (TLICS) classification are most frequently utilized (Table 3).

The mainstay of the thoracolumbar spine trauma management is based on modern comprehensive and easily reproducible classification that is based on:
- Objective clinical and imaging assessment.
- Provide standardized grading of the trauma.
- Identify any type of injury.
- Facilitates the decision if the fracture is stable/unstable.

Table 2. A comparative analysis between nonoperative versus operative treatments for AO type A thoracolumbar fractures

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Nonoperative</th>
<th>Surgery</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean pain VAS score</td>
<td>2.25</td>
<td>2.62</td>
<td>0.33</td>
</tr>
<tr>
<td>Mean kyphotic angle (°)</td>
<td>19.45</td>
<td>17.30</td>
<td>0.81</td>
</tr>
<tr>
<td>Mean vertebral height loss (%)</td>
<td>37.72</td>
<td>20.19</td>
<td>0.17</td>
</tr>
<tr>
<td>Mean physical compartment score (SF-36)</td>
<td>56.29</td>
<td>63.37</td>
<td>0.48</td>
</tr>
<tr>
<td>Mean mental compartment score (SF-36)</td>
<td>59.30</td>
<td>63.74</td>
<td>0.65</td>
</tr>
<tr>
<td>Mean hospital stay (day)</td>
<td>6.25</td>
<td>6.09</td>
<td>0.97</td>
</tr>
<tr>
<td>Mean return to work (day)</td>
<td>76.60</td>
<td>63.90</td>
<td>0.84</td>
</tr>
</tbody>
</table>

VAS, visual analogue scale; SF-36, 36-item Short Form Health Survey.
<table>
<thead>
<tr>
<th>Classification system</th>
<th>Characteristics</th>
<th>Pros/cons</th>
</tr>
</thead>
</table>
| Denis | 1. A 3-column theory based on 2-column theory of Holdsworth²⁴
2. Suggests that fractures of the middle column were very unstable.
3. According to morphology of the fracture and mechanism of injury, thoracolumbar fractures were classified as compression, burst, flexion-distraction, and fracture dislocation. | Pros: It is simple and introduces the idea of damage to the neurological system²⁴
Cons: it is quite challenging to identify thoracolumbar stable and unstable burst fractures⁴⁴ and interobserver reliability is low. Furthermore, it does not allow physicians to assess their therapeutic options for special fracture patterns on numerical evaluation of post-fracture stability⁴⁵ |
| McAfee | 1. PLC is a significant structure for the stability of the fracture, owing to the CT results.
2. Subcategorised the middle column trauma and suggested that the middle column fails by a trio of several forces such as axial compression, distraction, and translation.
3. Taking the mechanism of trauma into account, the authors separated such fractures into various categories, wedge compression fractures, stable, unstable burst fractures, chance fractures, flexion-distraction injuries, and translational injury²⁷ | Pros: Clear picture on surgical intervention required for type of fractures — stable burst or unstable burst⁴⁶
Cons: lack of studies evaluating its reliability and validity⁴⁴ |
| McCormack | 1. Forecasts the risk of failure of implant post posterior short-segment fixation for thoracolumbar spine fractures.
2. Primarily introduction was in the aim of avoiding repeat kyphosis and failure of posterior short-segment fixation with pedicle screws through allowing the most suitable approach regarding approach (surgery). | Pros: Load sharing score links well with the degree of spinal instability⁴⁶
Excellent inter- and intraobserver reliability was noted for junior surgeons⁴⁹
Cons: This classification intends only to identify fractures that would require additional anterior fixation following a posterior surgery⁴⁶ |
| AOspine | 1. Categorises trauma into 3 groups, A (compression), B (distraction), and C (translation) injuries⁴⁹ taking into account mechanism of trauma, morphology of the fracture, and mechanical stability.
2. Each category was further subcategorised from A1 to C3 (the higher the subgroup, the higher the severity of trauma and more unstable fractures) | Cons: AO Classification attempted to advise the comprehensive classification including all varied type of fractures, it showcased solely moderate intraobserver and interobserver reliability owing to its complexity^{45,50,51}
Further drawbacks include its inability to formulate a definition of stability of the fracture as well as no mention of a injury to the neurological function⁴³ |
| TLICS | 1. The classification appears more comprehensive in comparison to the previous AO classification and includes information on neurological status and posterior ligamentous integrity¹²
2. In terms of neurological functional status, grades vary from N0 (Neurologically intact), N1 (Transient deficit of neurological function), N2 (radicular symptoms), N3 (incomplete SCI or cauda equina injury), N4 (complete SCI), NX (unknown neurological status owing to sedation or trauma to the head)⁴⁹
3. Morphological analyzes hold a great deal of significance as it aids in therapeutic choices²² and categories vary from MM1 (abnormal alignment of vertebral column), MM2 (communion of the vertebral body), MM3 (stenosis of the spinal canal), MM4 (intervertebral disc lesion).²² The complete score was counted by talling up the scores from each of the 3 categories, and used to decide which treatment is most appropriate.
4. Conservative treatment is indicated for the total score of 3 points, 4 points to the grey area, where the decision on the therapy is taken by the physician, a score of 5 points indicates surgical treatment | Pros: The classification appears more comprehensive in comparison to the previous AO classification and includes significant information on neurological status and posterior ligamentous integrity¹²
Evaluation of TLISS showcased fair to substantial intraobserver and interobserver reliability in various studies⁸²⁻⁸⁴ |

PLC, posterior ligamentous complex; CT, computed tomography; SCI, spinal cord injury; TLICS, thoracolumbar injury classification and severity score; TLISS, thoracolumbar injury severity score.
• It gives the treatment direction – to fix or not to fix.
• Easily reproducible and easy to use in everyday practice.

Unfortunately, we are still searching for the ideal classification that will comply in 100% of the cases with the above criteria.

Oner et al. and Wood et al. indicated that the Denis classification system showed higher interobserver reliability than the AO classification system. Lenearz et al. reported the comparison of Denis, AO, TLICS systems in 97 thoracolumbar fractures and observed that changes in reliability were present in all 3 scenarios, with the highest reliability happening in the senior resident cohort and attending spine surgeon cohort. The lowest reliability was in the nonspine attending orthopedic and junior residents. In each cohort, the neurological function had the highest interobserver and intraobserver reliability. The researchers concluded that the TLICS is considered a widely deemed reliable tool compared to Denis and AO classification systems.

3. Indications for Treatment of Thoracolumbar Spine Fractures

The goal of the management of thoracolumbar fractures involves reinstating the structural integrity and stability of the damaged spine, thus providing a biomechanically optimum environment for helping recovery. Historically, thoracolumbar fractures were managed primarily nonoperatively. However, recent technological improvements have shifted the transition from nonoperative to surgical treatment. However, the neurological deficit is seldom observed in cases managed nonoperatively. There is a lack of high-quality comparative research papers, with literature not confirming surgical treatment's superiority over nonoperative treatment regarding pain management and restoration of neurological function.

Surgical treatment is seldom suggested for compression fractures. However, a vast proportion of flexion-distraction/fracture dislocations require surgery (stabilization). As surgical treatment is frequently recommended for thoracolumbar fractures with neurological deficits, the current review's main focus is the surgical management of fractures with neurological systems intact. To date, there is no high-quality, randomized research study supporting the superiority of surgical treatment over conservative treatment when there is no deficit of neurological function. Siebenga et al. revealed that AO type A fractures (with an intact neurological system) treated by surgical treatment compared to nonoperative treatment revealed superior radiological results; however, clinical outcomes were similar.

Literature suggests that conservative treatment is indicated even in burst fractures with canal encroachment in the absence of a neurologic function's major deficit. The spinal canal's spontaneous remodelling is one of the variables favouring nonoperative management.

Many spinal surgeons do not necessarily prioritize minimal neurological deficits (monoradicular symptoms) unless it is severe with spinal canal compromise in surgical decision-making. Meanwhile, all of the spinal trauma classification systems consider evaluation of spinal cord damage.

4. Nonoperative Management of Thoracolumbar Spine Fractures

In a spinal cord injury case, trauma to the neural structures happens both at the time of the trauma (primary – nonmodifiable) and in the subsequent period due to vascular dysfunction, edema, ischemia, electrolyte shifts, production of free radical, inflammation, and delayed apoptotic cell death (secondary – potentially modifiable) or iatrogenic reasons. During hospital treatment and in the emergency department management, also follow-up care, all the necessary measures should be taken to immobilize spinal trauma patients safely, to avoid a focal neurological deficit.

The statistics suggest that the majority of thoracolumbar fractures are stable, amenable to nonoperative management. The aim of nonoperative treatment is an appropriate regime of immobilization and, as early as possible, ambulation of the patient. At the start, a short duration of bed rest may be indicated. Successful nonoperative treatment is based on patient collaboration, physiotherapists, nurses, and senior physicians. A change in treatment plan may be considered in the event of significant deterioration of clinical or radiological presentation.

Half of the thoracolumbar fractures are classified as compression type due to axial compression alone or flexion forces and present with wedge deformities of the vertebral body on radiological evaluation. Patients with compression-type fractures are seldom treated operatively as they are rarely associated with a current or potential deficit of neurological function.

Various pharmacological therapies are thought to alleviate secondary trauma have been studied in depth. These include steroids (anti-inflammatory), gangliosides, naloxone (opioid receptor blocker), calcium channel blockers, free radical scavengers, and neurotropic agents. Steroids were used quite heavily in the clinical management of spinal cord injury since mid of the 1960s. In animal spinal cord injury models, neurological recovery improved following steroid use. After encouraging outcomes via an elevated dose of steroids in NASCIS (National Acute Spinal Cord Injury Study) 1 and 2 trials. However, in a third
study, methylprednisolone failed to demonstrate an effect in comparison to placebo. Additionally, due to increased risk of infections, its use is no longer recommended.71 American Association of Neurological Surgeons/Congress of Neurological Surgeons guidelines state that administration of methylprednisolone is no longer recommended as there is no class 1 or 2 study that has shown benefits. Hurlbert reported that the utility of high-dose methylprednisolone in the therapy of acute spinal cord injury is not proven as a standard of patient care.72 A survey (2006) indicated that most of the respondents continue to give methylprednisolone, but by fear of litigation. However, in the current times, a high dose of steroid treatment is not considered to be a mainstream treatment.73

Bracing is no longer considered necessary for the treatment of fractures of the vertebral column. Independent randomized control trials revealed no advantages from wearing braces.21,22 In a systematic review, Giele et al.23 reported that there is no evidence for the efficacy of bracing in cases with traumatic thoracolumbar fractures.

1) Pain improvement (VAS score)

Literature regarding pain improvement from nonoperative and operative management of AO type A fractures is conflicted. A randomized prospective study evaluating stable burst fracture management revealed a statistically significant pain improvement from nonoperative treatment compared to surgical intervention.14 Similar results were revealed by a large-scale retrospective study (n = 230). However, the difference was not statistically significant.17 On the other hand, Karaali et al.15 evaluating compression, burst fractures (without neurological deficit) revealed that surgical management might yield a superior pain improvement in comparison to nonoperative management.

2) Kyphotic angle and loss of vertebral body height

During conservative care, it is common to oversee a certain degree of increasing fracture kyphosis in most patients, frequently closer to the pretreatment sagittal alignment. However, kyphosis has not been showcased to link with increased pain levels in various studies, even up to 30°.13,75,76

Nonoperative management is less efficacious in decreasing kyphotic angle in comparison to surgical management. Karaali et al.15 revealed that the nonoperative cohort’s kyphotic angle (at the final follow-up, 24 months) of 17.61° to be higher than the surgical cohort (p < 0.001). Similar results were observed from a range of retrospective studies (Pehlivanoglu et al.16 and Shen et al.19).

Furthermore, nonoperative management seemed less successful in halting the loss of vertebral height than surgical management. Karaali et al.15 revealed that at all follow-ups (3 months, 6 months, and 24 months), the nonoperative cohort had a significantly higher (p < 0.001) loss of vertebral height versus the surgical cohort. Similar results were reported by the other retrospective designed studies; however, the 2 cohorts’ differences were not statistically significant.

Shamji et al.20 evaluated bracing and nonbracing cohorts, and results revealed bracing to not be significantly superior to nonbracing cohorts in limiting vertebral height loss.

3) Quality of life (SF-36)

Literature on which management leads to a higher quality of life is conflicted. Pehlivanoglu et al.16 revealed that the surgical cohort had a higher mental and physical compartment score than nonoperative cohorts. In contrast, Wood et al.14 demonstrated that nonoperative cohorts had a significantly higher mental and physical score versus the surgical cohort.

Studies evaluating bracing and nonbracing cohorts did not reveal any statistically significant results regarding improving quality of life.21

4) Length of hospitalisation and return to work

Literature on length of hospital stay for compression/burst fractures (without neurological deficit) managed nonoperatively and surgically is conflicted and lacking. While Karaali et al.15 revealed a shorter hospital stay for patients managed nonoperatively, Pehlivanoglu et al.16 showed otherwise.

All studies revealed that surgical management leads to a faster return to work versus nonoperative management regarding returning to work.

5. Future Research

Each section within these recommendations suggests areas of need for future high-quality studies. However, as an overall requirement, future research should try to analyze patients with thoracolumbar trauma separate from patients with cervical trauma to better clarify the most effective diagnostic and treatment ways for these patients in particular.

CONCLUSION

Ensuring the best indications for nonsurgical or surgical treatment for the patients sustaining thoracolumbar fractures remains crucial. However, the available literature is still not unanimous,
and further research is necessary. Compression-type fractures and stable burst fractures are mostly managed conservatively. If there is significant vertebral body structural damage, kyphotic angulation, neurological deficit, spinal canal compromise, surgical treatment may be considered. AO types B, C fractures are to be treated primarily surgically. The majority of the AO type A fractures may be treated conservatively.

WFNS RECOMMENDATION ON INDICATIONS FOR SURGICAL TREATMENT OF THORACOLUMBAR FRACTURES

- AO types B and C fractures preferably should not be treated conservatively (strongly agree 16.7%, agree 66.7%, disagree 16.7%).
- AO types A2, A3, and A4 can be treated conservatively if there is no significant vertebral body collapse, significant kyphotic angulation, or canal compromise with neurological impairment (agree 100%).
- There is no clinical evidence that bracing for conservative treatment of thoracolumbar fractures will improve the outcome (agree 100%).
- Fracture dislocations and cases with significant instability (score ≥ 5 of TLISS classification) should preferably be operated (strongly agree 16.7%, agree 83.3%).
- For burst fractures with neurological deficits, surgical decompression and stabilization may be considered, although there is not enough scientific evidence to support that (strongly agree 16.7%, agree 66.7%, disagree 16.7%).
- Burst fractures without neurological deficits can be treated either with conservative or surgical techniques (strongly agree 16.7%, agree 83.3%).

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

16. Pehlivanoglu T, Akgul T, Bayram S, et al. Conservative ver-

41. Pneumaticos SG, Triantafyllopoulos GK, Giannoudis PV. Advances made in the treatment of thoracolumbar fractures:...

Demographic Predictors of Treatment and Complications for Spinal Disorders: Part 2, Lumbar Spine Trauma

Omar Al Jammal1,*, Julian Gendreau2,*, Bejan Alvandi3,*, Neal A. Patel4, Nolan J. Brown5, Shane Shahrestani6,7, Brian V. Lien5, Arash Delavar1, Katelynn Tran5, Ronald Sahyouni1, Luis Daniel Diaz-Aguilar1, Kevin Gilbert1, Martin H. Pham1

1Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, CA, USA
2Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
3Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
4Department of Neurosurgery, Mercer University School of Medicine, Savannah, GA, USA
5Department of Neurosurgery, University of California Irvine, Orange, CA, USA
6Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
7Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA

Objective: To study the impact of demographic factors on management of traumatic injury to the lumbar spine and postoperative complication rates.

Methods: Data was obtained from the National Inpatient Sample (NIS) between 2010–2014. International Classification of Diseases, 9th revision, Clinical Modification codes identified patients diagnosed with lumbar fractures or dislocations due to trauma. A series of multivariate regression models determined whether demographic variables predicted rates of complication and revision surgery.

Results: A total of 38,249 patients were identified. Female patients were less likely to receive surgery and to receive a fusion when undergoing surgery, had higher complication rates, and more likely to undergo revision surgery. Medicare and Medicaid patients were less likely to receive surgical management for lumbar spine trauma and less likely to receive a fusion when operated on. Additionally, we found significant differences in surgical management and postoperative complication rates based on race, insurance type, hospital teaching status, and geography.

Conclusion: Substantial differences in the surgical management of traumatic injury to the lumbar spine, including postoperative complications, among individuals of demographic factors such as age, sex, race, primary insurance, hospital teaching status, and geographic region suggest the need for further studies to understand how patient demographics influence management and complications for traumatic injury to the lumbar spine.

Keywords: Lumbar spine trauma, Fusion, Decompression, Trauma, National Inpatient Sample

INTRODUCTION

Traumatic injury to the lumbar spine is typically treated with nonoperative therapy with bracing. However, surgical intervention for traumatic fractures of the lumbar spine is indicated when the biomechanical stability of the spine is compromised or to mitigate the risks of further neurological deficits. Lumbar spinal fusion, including simple and complex fusion, allows vertebrae to be joined and can be used for vertebral fractures and dislocations. Surgical decompression is useful for improving neurological functions following lumbar spine trauma by preventing secondary injury to the spinal cord.
Demographic predictors of outcomes after surgery for lumbar spine trauma are not well studied, including predictors such as race, insurance type, hospital teaching status, and geographic region. In this study, the publicly available National Inpatient Sample (NIS) database, which reports data from hospitals across the United States, was queried to identify patients with a primary diagnosis of traumatic injury to the lumbar spine. These patients were analyzed for surgical management and outcomes, including complications and complication rates, type of surgery performed, and revisions. These data were then subject to a set of multivariate analyses. The goal of this study was to identify demographic risk factors for a poor outcome, which may help guide clinical decision-making for surgeons treating traumatic lumbar spine disorders and improve the care for more vulnerable patient populations.

MATERIALS AND METHODS

This paper is part of a series which examines demographic predictors of surgical outcomes in patients undergoing lumbar spine surgery. Data were obtained from the NIS, a Healthcare Cost and Utilization Project (HCUP) database which includes a 20% sample of discharges from HCUP-participating hospitals. Overall, the NIS includes data on over 7 million discharges per year; this study includes data from 2010–2014. International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM) codes were used to identify all patients with a primary diagnosis of a traumatic injury of the lumbar spine including open and closed lumbar fractures without mention of spinal cord injury (805.4, 805.5), open and closed lumbar fractures with mention of spinal cord injury (806.4, 806.5), and multiple or ill-defined dislocations of lumbar vertebra (839.20, 839.30).

A total of 38,249 patients were identified and were examined for 1 of 3 surgical outcomes: (1) decompression alone (3, 3.09, 80.5, 80.51), (2) simple fusion involving 3 or less vertebral levels (81, 81.04, 81.05, 81.06, 81.07, 81.08, 81.62), and (3) complex fusion involving greater than 3 vertebral levels or a 360° spinal fusion (81.61, 81.63, 81.64). The patients were stratified by different demographic variables including age, sex, primary insurance, hospital teaching status, and geographic region. Surgical patients were assessed for various complications including implant-related complications, wound-related complications, incidental durotomy, laceration or puncture, hemorrhage, bacteremia, postoperative infection, postoperative shock, myocardial infarction, iatrogenic stroke, neurologic complications, venous thromboembolism, urinary complications, and death. ICD-9-CM codes used to define sets of diagnoses and complications are provided in the supplemental materials.

A series of multivariate Poisson regression analyses was used to determine if any individual demographic variable predicted a surgical outcome such as the odds of receiving any surgery (decompression or fusion) or the odds of receiving a fusion in particular. Furthermore, a series of regressions was used to determine if any individual demographic variable as well as any particular type of operation (decompression, simple fusion, or complex fusion) predicted surgical complications, including the need for a revision operation. Additionally, the presence of a comorbid spinal deformity, such as kyphosis (737.1, 737.19, 737.41), lordosis (737.2, 737.42), scoliosis (737.3, 737.32, 737.34, 737.43, 737.49), or other idiopathic curvatures of the spine (737.4, 754.2, 756.19), was assessed as a predictor of surgical complication. All multivariate regression models were controlled for age, sex, primary insurance type, median household income, geographic region, hospital teaching status, comorbidity status, and additional variables displayed in the Results section tables. Multivariate analyses were presented as odds ratios, with corresponding 95% confidence intervals (CI) and p-values; (odds ratio [OR]; 95% CI; p < x). Given the cohort sample size and the series of multivariate analyses, a p-value < 0.05 was used to determine significance. Data extraction, analyses, and statistical tests were done with Stata 11.2 (StataCorp LLC, College Station, TX, USA) and RStudio (R ver. 3.5.1, R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

1. Demographics

A total of 38,249 patients were identified for analysis over a 5-year period. In this cohort, 5,776 (15.1%) patients received surgery, including 1.9% decompressions, 8.8% simple fusions, and 4.4% complex fusions. The average age was 65.8 ± 21.4. In terms of sex, 56.1% of patients were female. For racial background, 81.1% were White, 8.3% were Hispanic, 5.1% were Black, 2.6% were Asian/Pacific Islander, and 2.5% were from other groups. Within this cohort, 58.2% had Medicare, 23.5% of patients had private insurance, and 6.1% had Medicaid.

In terms of hospital teaching status, 51.8% admitted to urban teaching hospitals, 38.2% admitted to urban nonteaching hospitals, and 9.9% of patients were admitted to rural hospitals. In terms of geographic region, 43.5% of hospitals were in the South, 19.0% of hospitals were in the Midwest, 19.0% of hospitals were in the West, and 18.6% hospitals were in the Northeast. The av-
average Charlson Comorbidity Index (CCI) score was 0.99 ± 1.5 (Table 1).

Table 1. Characteristics of patients* with traumatic lumbar spine injury from 2010 to 2014 in the National Inpatient Sample

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>7,975</td>
<td>7,628</td>
<td>7,547</td>
<td>7,489</td>
<td>7,610</td>
</tr>
<tr>
<td>Total operations</td>
<td>1,148 (14.4)</td>
<td>1,147 (15.0)</td>
<td>1,130 (15.0)</td>
<td>1,175 (15.7)</td>
<td>1,176 (15.5)</td>
</tr>
<tr>
<td>Decompression (%)</td>
<td>1.6</td>
<td>2.0</td>
<td>1.9</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Simple fusion (%)</td>
<td>8.8</td>
<td>8.6</td>
<td>8.8</td>
<td>9.1</td>
<td>8.5</td>
</tr>
<tr>
<td>Complex fusion (%)</td>
<td>4.0</td>
<td>4.4</td>
<td>4.2</td>
<td>4.4</td>
<td>5.0</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>64.8 ± 22.3</td>
<td>67.0 ± 21.2</td>
<td>65.7 ± 21.3</td>
<td>65.8 ± 21.1</td>
<td>65.9 ± 21.3</td>
</tr>
<tr>
<td>Female sex (%)</td>
<td>54.7</td>
<td>57.2</td>
<td>56.6</td>
<td>56.1</td>
<td>56.2</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White (%)</td>
<td>81.5</td>
<td>82.5</td>
<td>81.4</td>
<td>80.2</td>
<td>79.8</td>
</tr>
<tr>
<td>Black (%)</td>
<td>5.0</td>
<td>4.9</td>
<td>4.5</td>
<td>5.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Hispanic (%)</td>
<td>8.1</td>
<td>7.9</td>
<td>8.3</td>
<td>8.8</td>
<td>8.3</td>
</tr>
<tr>
<td>Asian/Pacific Islander (%)</td>
<td>2.6</td>
<td>2.0</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Other (%)</td>
<td>2.4</td>
<td>2.3</td>
<td>2.5</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Primary insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private (%)</td>
<td>25.9</td>
<td>23.2</td>
<td>23.5</td>
<td>22.7</td>
<td>22.2</td>
</tr>
<tr>
<td>Medicare (%)</td>
<td>54.8</td>
<td>60.1</td>
<td>58.4</td>
<td>59.4</td>
<td>58.5</td>
</tr>
<tr>
<td>Medicaid (%)</td>
<td>6.0</td>
<td>5.7</td>
<td>5.3</td>
<td>5.5</td>
<td>8.1</td>
</tr>
<tr>
<td>Hospital teaching status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural (%)</td>
<td>11.9</td>
<td>10.1</td>
<td>10.0</td>
<td>9.7</td>
<td>7.8</td>
</tr>
<tr>
<td>Urban, nonteaching (%)</td>
<td>41.5</td>
<td>44.4</td>
<td>39.8</td>
<td>39.0</td>
<td>26.3</td>
</tr>
<tr>
<td>Urban, teaching (%)</td>
<td>46.5</td>
<td>45.5</td>
<td>50.2</td>
<td>51.3</td>
<td>65.9</td>
</tr>
<tr>
<td>Geographic region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast (%)</td>
<td>19.2</td>
<td>19.7</td>
<td>17.9</td>
<td>18.1</td>
<td>17.9</td>
</tr>
<tr>
<td>South (%)</td>
<td>43.9</td>
<td>43.6</td>
<td>43.9</td>
<td>42.6</td>
<td>43.6</td>
</tr>
<tr>
<td>Midwest (%)</td>
<td>16.9</td>
<td>18.5</td>
<td>19.5</td>
<td>20.6</td>
<td>19.4</td>
</tr>
<tr>
<td>West (%)</td>
<td>20.0</td>
<td>18.2</td>
<td>18.8</td>
<td>18.8</td>
<td>19.0</td>
</tr>
<tr>
<td>Death (%)</td>
<td>0.76</td>
<td>0.71</td>
<td>0.85</td>
<td>0.53</td>
<td>0.72</td>
</tr>
<tr>
<td>Charlson Comorbidity Index score</td>
<td>0.90 ± 1.39</td>
<td>0.97 ± 1.44</td>
<td>0.99 ± 1.47</td>
<td>1.03 ± 1.49</td>
<td>1.03 ± 1.54</td>
</tr>
</tbody>
</table>

Values are presented as number (%) or mean ± standard deviation.
*Unweighted data, national estimates not provided.

2. Surgical Versus Conservative Management

After adjusting for age, median household income, and Charlson comorbidity status, it was found that female patients had lower odds of receiving surgery than male patients (OR, 0.79; 95% CI, 0.74–0.84; p < 0.001). Moreover, Black patients (OR, 0.76; 95% CI, 0.66–0.86; p < 0.001) and Hispanic (OR, 0.89; 95% CI, 0.80–0.99; p = 0.028) patients had lower odds of receiving surgery compared to White patients. When considering insurance type of patients, Medicare (OR, 0.55; 95% CI, 0.50–0.60; p < 0.001) and Medicaid (OR, 0.79; 95% CI, 0.71–0.89; p < 0.001) patients had a significantly lower rate of receiving surgery compared to private insurance patients. Patients at rural hospitals had lower odds of receiving surgery compared to patients at urban, nonteaching hospitals (OR, 1.92; 95% CI, 1.66–2.23; p < 0.001) and urban teaching hospitals (OR, 2.62; 95% CI, 2.27–3.03; p < 0.001). When analyzing the geographic region of hospitals where patients were treated, we found that patients treated in the South (OR, 1.2; 95% CI, 1.1–1.32; p < 0.001) and West (OR, 1.15; 95% CI, 1.04–1.27; p = 0.007) had higher odds of receiving surgery when compared to patients treated in the Northeast. Patients with spinal deformity (scoliosis, kyphosis, or lordosis)
3. Spinal Fusion

For patients that received surgery due to traumatic injury to the lumbar spine, we analyzed the odds of these patients receiving a fusion based on sex, race, primary insurance type, and co-existing spinal deformity. Models which also adjusted for age, median household income, and CCI score, found that female patients (OR, 0.76; 95% CI, 0.64–0.89; p = 0.001) had lower odds of receiving a fusion compared to male patients. Similarly, Black patients (OR, 0.63; 95% CI, 0.47–0.85; p = 0.002) undergoing surgery had lower odds of receiving a fusion compared to White patients. When considering insurance status in patients receiving surgery for traumatic lumbar spine injury, we found that Medicare (OR, 0.69; 95% CI, 0.54–0.89; p = 0.004) and Medicaid (OR, 0.73; 95% CI, 0.55–0.99; p = 0.042) patients that were operated on had lower odds of receiving fusion compared to private insurance patients. Lastly, patients with a spinal deformity (OR, 17.42; 95% CI, 8.01–48.93; p = 0.001) had significantly higher odds of receiving fusion compared to patients without a spinal deformity.

4. Surgical Complications

We analyzed complication rates for surgical patients with a primary traumatic condition of the lumbar spine. The total complication rate for the cohort was 30.1%. Hemorrhage/hematoma/seroma was seen in 18.1% of patients, urinary complications in 8.0% of patients, incidental durotomy in 3.2% of patients, implant-related complications in 2.1% of patients, venous thromboembolism in 1.7% of patients, wound-related complications in 1.3% of patients, bacteremia/septicemia in 1.2% of patients, postoperative infection in 1.1% of patients, and neurologic complications in 0.9% of patients. The death rate for 1,148 surgical patients in 2010 was 1.2% (Table 3).

We utilized a multivariate Poisson regression model to determine if demographic factors influenced the odds of developing surgical complications. Patients undergoing complex fusion, defined as 4+ levels fused (OR, 1.98; 95% CI, 1.62–2.45; p < 0.001), and simple fusion, defined as 2–3 levels fused (OR, 1.98; 95% CI, 1.62–2.45; p < 0.001), had higher odds of developing complications compared to patients undergoing decompression alone. When considering sex, female patients (OR, 1.3; 95% CI, 1.15–1.46; p < 0.001) were found to have higher odds of developing complications compared to male patients. Moreover, Hispanic (OR, 0.77; 95% CI, 0.63–0.95; p < 0.014) and Asian/Pacific Islander (OR, 0.66; 95% CI, 0.43–0.97; p = 0.041) patients had lower odds of developing complications compared to White patients. In terms of insurance status, Medicare patients (OR, 0.55; 95% CI, 0.50–0.60; p < 0.001) were found to have significantly higher odds of receiving surgery when compared to patients without spinal deformity (OR, 4.81; 95% CI, 4.23–5.45; p < 0.001) (Table 2).
Demographic Predictors of Lumbar Spine Trauma

Jammal OA, et al.

https://doi.org/10.14245/ns.2142614.307

Table 3. Complication rates in surgical patients with a primary traumatic condition of the lumbar spine from 2010 to 2014 in the National Inpatient Sample (NIS)

<table>
<thead>
<tr>
<th>Variable</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>1,148</td>
<td>1,147</td>
<td>1,130</td>
<td>1,175</td>
<td>1,176</td>
</tr>
<tr>
<td>Total complication rate (%)</td>
<td>27.8</td>
<td>28.7</td>
<td>30.8</td>
<td>31.7</td>
<td>31.4</td>
</tr>
<tr>
<td>Implant-related complication</td>
<td>1.39</td>
<td>2.53</td>
<td>1.77</td>
<td>2.04</td>
<td>2.64</td>
</tr>
<tr>
<td>Wound-related complication</td>
<td>1.66</td>
<td>1.39</td>
<td>1.24</td>
<td>1.02</td>
<td>-</td>
</tr>
<tr>
<td>Incidental durotomy</td>
<td>2.87</td>
<td>3.75</td>
<td>3.10</td>
<td>3.40</td>
<td>3.06</td>
</tr>
<tr>
<td>Hemorrhage/hematoma/seroma</td>
<td>15.85</td>
<td>16.56</td>
<td>18.31</td>
<td>19.74</td>
<td>20.15</td>
</tr>
<tr>
<td>Bacteremia/sepsis</td>
<td>1.05</td>
<td>-</td>
<td>1.77</td>
<td>0.94</td>
<td>1.02</td>
</tr>
<tr>
<td>Postoperative infection</td>
<td>1.22</td>
<td>0.96</td>
<td>0.97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neurologic complication</td>
<td>0.96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.85</td>
</tr>
<tr>
<td>Venous thromboembolism*</td>
<td>1.48</td>
<td>1.13</td>
<td>1.77</td>
<td>2.3</td>
<td>1.96</td>
</tr>
<tr>
<td>Urinary complication*</td>
<td>8.01</td>
<td>8.37</td>
<td>8.58</td>
<td>7.91</td>
<td>7.06</td>
</tr>
<tr>
<td>Death (%)</td>
<td>1.22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NIS prohibits publication of patient groups < 10.

*Total complication rate excluding death. Venous thromboembolism includes diagnostic codes for pulmonary embolism and thromboembolism in deep vessels of the lower extremities. Urinary complication includes diagnostic codes for urinary tract infection and unspecified urinary complication.

1.36; 95% CI, 1.14–1.62; p < 0.001) had higher odds of surgical complications compared to private insurance patients, whereas there was no difference observed with Medicaid patients. Unlike patients at urban nonteaching hospitals, patients at urban teaching hospitals (OR, 1.59; 95% CI, 1.18–2.19; p < 0.003) were more likely to experience complications compared to patients at rural hospitals (Table 4).

In addition to complications, we looked at the odds of patients receiving revision surgery for traumatic injury to the lumbar spine. Patients undergoing simple fusion (OR, 6.47; 95% CI, 2.36–26.69; p = 0.002) and complex fusion (OR, 10.1; 95% CI, 3.66–41.85; p < 0.001) had higher odds of receiving a revision operation compared to patient receiving decompression alone. Furthermore, we found that female patients (OR, 1.44; 95% CI, 1.00–2.09; p < 0.001) had higher odds of receiving revision surgery compared to male patients. Unlike Medicaid patients, Medicare patients (OR, 2.66; 95% CI, 1.60–4.51; p < 0.001) had higher odds of receiving revision surgery compared to private insurance patients. Lastly, patients with a coexisting spinal deformity were at increased odds of receiving a revision operation (OR, 1.71; 95% CI 1.04–2.69; p = 0.027) (Table 5).

DISCUSSION

In this study, we performed a retrospective analysis of national administrative hospital data from a 5-year period. The objective of this study was to identify demographic predictors of patient management decisions and postoperative complications in a large sample of patients diagnosed with a primary traumatic condition of the lumbar spine. We utilized multivariate predictive modeling to control for patient-specific confounding variables. We found that demographic variables such as sex, race, insurance type, geographic region, and hospital teaching status may have significant influences on whether patients will receive conservative or surgical therapy for trauma to the lumbar spine. Moreover, additional multivariate models were created to determine if certain patient variables could predict complication rates. Our results suggest that surgery type, sex, race, insurance type, and hospital teaching status may predict inpatient complications within our large cohort.

There are very few studies that have studied the role of demographic variables on patient outcome after spine trauma. Schoenfeld et al. found that patient demographics such as race and insurance status could influence outcomes after traumatic injury to the spine. Namely, they found that minority patients, including Black patients, were at increased risk of mortality. In our analysis, we found that Black patients were less likely to receive a fusion for lumbar spine trauma compared to White patients. Moreover, our findings show that Black and Hispanic patients were overall less likely to be surgically managed for lumbar spine trauma.
Table 4. Odds ratio for surgical complication* in patients with a primary traumatic lumbar condition - multivariable Poisson regression, National Inpatient Sample data, 2010–2014

<table>
<thead>
<tr>
<th>Variable</th>
<th>Incidence rate ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decompression Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple fusion (2–3 levels)</td>
<td>1.98</td>
<td>1.62–2.45</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Complex fusion (4+ levels)</td>
<td>2.84</td>
<td>2.29–3.55</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.30</td>
<td>1.15–1.46</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.84</td>
<td>0.64–1.08</td>
<td>NS</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.77</td>
<td>0.63–0.95</td>
<td>0.014</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>0.66</td>
<td>0.43–0.97</td>
<td>0.041</td>
</tr>
<tr>
<td>Other</td>
<td>0.88</td>
<td>0.62–1.23</td>
<td>NS</td>
</tr>
<tr>
<td>Primary insurance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicare</td>
<td>1.36</td>
<td>1.14–1.62</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Medicaid</td>
<td>1.22</td>
<td>0.99–1.50</td>
<td>NS</td>
</tr>
<tr>
<td>Hospital teaching status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban, nonteaching</td>
<td>1.22</td>
<td>0.89–1.70</td>
<td>NS</td>
</tr>
<tr>
<td>Urban, teaching</td>
<td>1.59</td>
<td>1.18–2.19</td>
<td>0.003</td>
</tr>
<tr>
<td>Spinal deformity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scoliosis, kyphosis, lordosis</td>
<td>0.86</td>
<td>0.70–1.06</td>
<td>NS</td>
</tr>
</tbody>
</table>

Also adjusted for age, Charlson comorbidity status, year, and median household income.
CI, confidence interval; NS, not significant.

*One or more surgical complications listed in Table 4, excluding death.

Table 5. Odds ratio for receiving a revision operation in surgical patients with a primary traumatic condition of the lumbar spine - multivariable Poisson regression, National Inpatient Sample data, 2010–2014

<table>
<thead>
<tr>
<th>Variable</th>
<th>Incidence rate ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decompression Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple fusion (2–3 levels)</td>
<td>6.47</td>
<td>2.36–26.69</td>
<td>0.002</td>
</tr>
<tr>
<td>Complex fusion (4+ levels)</td>
<td>10.1</td>
<td>3.66–41.85</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.44</td>
<td>1.00–2.09</td>
<td>0.049</td>
</tr>
<tr>
<td>Primary insurance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicare</td>
<td>2.66</td>
<td>1.60–4.51</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Medicaid</td>
<td>1.71</td>
<td>0.82–3.35</td>
<td>NS</td>
</tr>
<tr>
<td>Spinal deformity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scoliosis, kyphosis, lordosis</td>
<td>1.71</td>
<td>1.04–2.69</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Adjusted for age, year, Charlson comorbidity status, and median household income.
CI, confidence interval; NS, not significant.

Prior studies have shown that insurance status can affect the likelihood of patients receiving surgery. We found that Medicare and Medicaid patients were less likely to receive surgery for traumatic injury to the lumbar spine when compared to private insurance patients. Furthermore, insurance status has also been shown to influence mortality as well as length of stay for patients after traumatic injury to the spine. In terms of complications, we found that Medicare but not Medicaid patients were more likely to experience surgical complications. Similarly, Medicare, but not Medicaid patients, were more likely to receive a revision operation. Although higher complication rates have been reported after spine surgery among the elderly, our analyses of demographic predictors adjusted for age among other factors. Medicaid patients have been found previously in some studies to have higher complication rates after spine surgery. However, to the best of our knowledge, no studies have analyzed the role of patient demographics on complication rates after surgery to treat traumatic injury to the lumbar spine. Our study, which has the advantage of including a large sample size and thus increasing power, does not show that Medicaid pa-
tients having surgery for lumbar trauma are more likely to suffer from postoperative complications. Although it appears that insurance status, including having Medicare or Medicaid, may impact the likelihood of patients receiving surgery for lumbar spine trauma, we found that only Medicare patients appear to be at increased risk for complications postoperatively.

The role of sex on patient management and outcome after surgery for lumbar spine trauma is still unclear and prior studies on this topic are limited. In a relatively small study of acute traumatic spinal cord injury, it was found that therapeutic approaches, mortality, comorbidities, and length of stay were similar between male and female patients. Some studies have shown that surgical complications are higher for female patients that undergo spine surgery and that female patients receive surgery at a later stage of their disease due to reluctance to undergo surgery. Our results show that female patients, when compared to male patients, were less likely to receive surgery, less likely to receive a fusion when undergoing surgery, had higher complication rates, and were more likely to undergo revision surgery. To our knowledge, our study is the first to illuminate disparities in the management and postoperative complication rates between male and female patients treated for traumatic injury to the lumbar spine.

Aside from insurance status, race, and sex, we show that hospital teaching status can also influence patient management and postoperative complications after lumbar spine trauma. We found that postoperative complications were more likely to occur in urban teaching hospitals but not urban nonteaching hospitals when compared to rural hospitals. These results align with previous findings that complications are more frequent in teaching hospitals compared to nonteaching hospitals. This study has some limitations. As a retrospective analysis, there are biases inherent to the study design. In addition, a challenge for large administrative database studies is determining how clinically important or relevant a difference is since small differences can be found to be statistically significant. Also, the data from this study was obtained from a relatively short time period (2010–2014) due to the mandatory change from ICD-9 to ICD-10 coding in 2015. The decision to limit the data to this five-year period eliminates the potential confounds associated with 2 different ICD coding systems. Additionally, individual variation in the use of ICD-9-CM codes among surgeons could be a source of limitation. Despite these limitations, a strength of this study is its sample size (38,249 patients) which better reflects the population of patients with traumatic injury to the lumbar spine, which would not be practical for study designs producing higher levels of evidence with fewer sources of bias.

CONCLUSION

Lumbar spine trauma is common, and surgery is at times necessary to prevent further damage and to improve quality of life. Demographic variables such as age, sex, race, primary insurance, hospital teaching status, and geographic region may have significant influences on management (conservative versus surgical treatment) of traumatic injury to the lumbar spine, as well as postoperative complications. Further studies are needed to fully understand the influence of patient demographics for patients undergoing surgery for traumatic injury to the lumbar spine.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

7. Yang JS, Kagawa-Singer M. Increasing access to care for cultural and linguistic minorities: ethnicity-specific health care organizations and infrastructure. J Health Care Poor Under-
Demographic Predictors of Lumbar Spine Trauma

Jammal OA, et al.

served 2007;18:532-49.
Regional Anesthesia for Lumbar Spine Surgery: Can It Be a Standard in the Future?

Jae-Koo Lee¹, Jong Hwa Park², Seung-Jae Hyun¹, Daniel Hodel³, Oliver N. Hausmann⁴,⁵

¹Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea
²Department of Neurosurgery, Spine Center, Yul Hospital, Hwasung, Korea
³Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, Hirslanden Klinik St. Anna, Lucerne, Switzerland
⁴Neuro- and Spine Center, Hirslanden Klinik St. Anna, Lucerne, Switzerland
⁵University of Berne, Berne, Switzerland

This paper is an overview of various features of regional anesthesia (RA) and aims to introduce spine surgeons unfamiliar with RA. RA is commonly used for procedures that involve the lower extremities, perineum, pelvic girdle, or lower abdomen. However, general anesthesia (GA) is preferred and most commonly used for lumbar spine surgery. Spinal anesthesia (SA) and epidural anesthesia (EA) are the most commonly used RA methods, and a combined method of SA and EA (CSE). Compared to GA, RA offers numerous benefits including reduced intraoperative blood loss, arterial and venous thrombosis, pulmonary embolism, perioperative cardiac ischemic incidents, renal failure, hypoxic episodes in the postanesthetic care unit, postoperative morbidity and mortality, and decreased incidence of cognitive dysfunction. In spine surgery, RA is associated with lower pain scores, postoperative nausea and vomiting, positioning injuries, shorter anesthesia time, and higher patient satisfaction. Currently, RA is mostly used in short lumbar spine surgeries. However, recent findings illustrate the possibility of applying RA in spinal tumors and spinal fusion. Various researches reveal that SA is an effective alternative to GA with lower minor complications incidence. Comprehensive insight on RA will promote spine surgery under RA, thereby broadening the horizon of spine surgery under RA.

Keywords: Regional anesthesia, Spinal anesthesia, Epidural anesthesia, Lumbar spine

INTRODUCTION

Regional anesthesia (RA), which includes epidural anesthesia (EA) via catheter infusion and spinal anesthesia (SA) via single-shot injection, is commonly used for procedures of known duration that involve the lower extremities, perineum, pelvic girdle, or lower abdomen.¹⁻⁸ The literature notes numerous advantages of RA over general anesthesia (GA), including favorable perioperative hemodynamic stability, reduced mortality, intraoperative blood loss, arterial and venous thrombosis, pulmonary embolism, myocardial infarction, renal failure, and decreased incidence of cognitive dysfunction.⁹⁻¹⁵

Even though RA is widely accepted in other fields, the use of RA during elective lumbar surgery failed to gain wide acceptance.¹⁻⁵,¹⁶ GA is the preferred and most commonly used anesthesia technique for lumbar spine surgery such as microdiscectomy or lumbar decompression.¹⁷⁻²⁰ This may be due to greater acceptance by patients, the ability to easily extend the duration of an operation using GA, and/or anesthesiologist preference for GA because of a more secure airway establishment during the prone position.²¹ Also to consider RA, it is important to assess the nature and duration of surgery, patient comorbidities, the ease of spinal insertion (i.e., positioning and spinal pathology), and the relative benefits and risks to the individual.
Nonetheless, RA has been reported to be a safe and effective as GA for lumbar spine surgery of short duration.1,5,7,15,22-26 Considering the wide usage of RA in other surgical fields, RA can have many applications in lumbar spine surgery.

This paper is an overview of various features of RA. Our knowledge of RA for spine surgery is largely based on very limited data. The aim of the study was to introduce spine surgeons unfamiliar with RA and to promote lumbar spine surgery under RA. We will discuss RA from a spine surgeon’s point of view, rather than giving specifics about the anesthesia itself.

WHAT IS REGIONAL ANESTHESIA?

RA, also called neuraxial anesthesia, can be used while you are awake or in combination with sedation or GA. SA (via single-shot injection) and EA (via epidural catheter) are the most commonly used RA methods. SA is also called a spinal block, subarachnoid block, intradural block, and intrathecal block. It is a form of neuraxial RA involving the injection of a local anesthetic and/or opioid into the subarachnoid space. The local anesthetic and/or opioid injected into the cerebrospinal fluid (CSF) provides anesthesia, analgesia, and motor and sensory blockade. Otherwise, EA injects analgesics and local anesthetics through a catheter placed into the epidural space. The injection can result in a loss of sensation including pain by blocking the transmission of signals through nerve fibers in or near the spinal cord. EA can be used both during and after surgery for pain management.

DIFFERENCES BETWEEN EPIDURAL ANESTHESIA AND SPINAL ANESTHESIA

The similarities between SA and EA often confuse people that they are the same anesthetic techniques. Important differences are summarized in Table 1. Generally, EA requires a larger drug dose than SA. The onset of analgesia is slower with EA (> 20 minutes) than SA (< 5 minutes), which also causes a more gradual decrease in blood pressure. EA can be performed anywhere along the vertebral column including cervical, thoracic, lumbar, and sacral vertebrae. For EA, the epidural catheters are punctured at least 2 intervertebral levels above the surgical level (e.g., for the L5–S1 at the L3–4 intervertebral space).27 Adequate anesthesia was considered usually at the T6–10 for spinal surgery. EA can perform an epidural block postoperatively through an already inserted epidural catheter. SA is mostly performed below the second lumbar vertebral body to avoid piercing the spinal cord and consequently damaging the spinal cord. SA wears off in a cephalad to caudal direction, thus sacral levels will last longer than thoracic. The anesthetic effect of SA after a single-shot injection usually lasts about 2–4 hours.

There is also a method of combined SA and EA (CSE).28 It is a method that pursuits the reliability of SA and the flexibility of EA simultaneously. The dose of local anesthetics for SA can be reduced so that the spinal level of sensory block is lowered, and adverse effects can be reduced. The advantage of CSE is the ability to use a low dose of intrathecal local anesthetic, with the preparation that the epidural catheter may be used to extend the block if necessary. This allows surgeons not to be chased during anesthesia, helping surgeons to focus on the operation itself.

CONTRAINDICATIONS TO REGIONAL ANESTHESIA

There are few contraindications to RA and are summarized in Table 2.2,4,17,22,24,29,30 The most important absolute contraindication is patient refusal. Surgeons, as well as anesthesiologists, should be concerned about the patient’s anxiety. Others include localized infection and allergy to drugs planned to be administered for the anesthesia. A patient’s inability to stay still during needle puncture, which may lead to traumatic injury to the neural structures,31 as well as increased intracranial pressure, which may cause brainstem herniation,32 should be accounted as absolute contraindications to RA.

Patients with coagulopathy including taking antiplatelets/anticoagulants are relatively contraindicated due to the risk of an epidural hematoma. The history of previous lumbar spine sur-

Table 1. Differences between epidural anesthesia and spinal anesthesia

<table>
<thead>
<tr>
<th>Features</th>
<th>Epidural anesthesia (EA)</th>
<th>Spinal anesthesia (SA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug dose</td>
<td>Larger dose than SA</td>
<td>Smaller dose than EA</td>
</tr>
<tr>
<td>Onset of anesthesia</td>
<td>Approximately 25–30 minutes</td>
<td>Approximately 5 minutes</td>
</tr>
<tr>
<td>Spine level that can be performed</td>
<td>Anywhere along the vertebral column</td>
<td>Lumbar only (mostly below the L2 vertebral body)</td>
</tr>
<tr>
<td>Quality of anesthesia</td>
<td>Not as good as SA</td>
<td>High</td>
</tr>
<tr>
<td>Intraoperative redosing</td>
<td>Possible, can be continued postoperatively via a catheter</td>
<td>Generally, a single-shot injection</td>
</tr>
<tr>
<td>Duration of block</td>
<td>Adjustable, prolonged</td>
<td>Brief, usually 2–4 hours</td>
</tr>
</tbody>
</table>

surgery also increases the risk of nerve damage due to anatomical changes and epidural adhesions. The spread of local anesthetics may be restricted by scar tissue. Undetermined neurological disease is a relative contraindication. Demyelinating diseases such as multiple sclerosis (MS) should be careful when considering RA due to their increased susceptibility to local anesthetic toxicity. However, there is no clear evidence that RA exacerbates the neurological symptoms of MS. It is safe not to undergo RA if it deviates from the normal anatomical vertebral structure. Traditionally, RA has been considered contraindicated in patients with preload (volume) dependent states such as aortic stenosis due to the risk of acute decompensation in response to decreased systemic vascular resistance. The patients with hypovolemia may exhibit an exaggerated hypotensive response to the vasodilatory effects of RA which results in a sympathetic my 2–6 dermatomes above the sensory block.

Additionally, there are contraindications specific to spine surgery patients. Severe or multilevel spinal stenosis, near complete-total myelographic block, or myelographic demonstration of arachnoiditis is contraindicated.

ADVANTAGES OF REGIONAL ANESTHESIA

The pros and cons of RA are summarized in Table 3. Compared to GA, RA is associated with reduced intraoperative blood loss, reduced mortality, arterial and venous thrombosis, pulmonary embolism, perioperative cardiac ischemic incidents, renal failure, and hypoxic episodes in the postanesthetic care unit (PACU). Though there are conflicting results, RA is associated with lower postoperative morbidity and mortality compared with GA, and decreased incidence of cognitive dysfunction.

In the case of spine surgery, RA is associated with lower pain scores during PACU stay, shorter anesthesia time, and higher levels of patient satisfaction than GA after spinal surgery. Multiple studies show RA is associated with decreased incidence of postoperative nausea and vomiting, due to its reduced systemic side effects and less cerebral-targeted drug action. RA offers the patient self-position in prone cases. This is likely to reduce the chance of positioning injuries, such as brachial plexus injury, complications related to head malposition, such as pressure necrosis of the face, blindness, and pressure sores. Further, SA is more time-efficient than GA. The use of SA for lumbar spine surgery showed 19 minutes of shorter anesthesia time compared to GA. By using continuous EA, the patient can manage postoperative pain via epidural analgesia, which provides better pain control and lower stress response.

DISADVANTAGES OF REGIONAL ANESTHESIA

There are concerns in using neuraxial anesthesia in patients with spinal pathology. There are decreased patient acceptance and a problem with securing the airway. There is a need for multiple attempts and risk of failure due to anatomical changes, either induced by previous interventions or pre-existing. It was reported that patients with spine pathology are prone to experience paresthesia during SA conduction. It is challenging for the patient to maintain a prone position for a long duration while awake, so GA is preferred in procedures lasting more than 2 hours.

Table 2. Contraindications to regional anesthesia

<table>
<thead>
<tr>
<th>Absolute contraindications</th>
<th>Relative contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient refusal</td>
<td>Infection</td>
</tr>
<tr>
<td>Localized sepsis</td>
<td>Coagulopathy</td>
</tr>
<tr>
<td>Allergy to drugs planned for administration</td>
<td>Previous spine surgery</td>
</tr>
<tr>
<td>Patient’s inability to maintain stillness during needle puncture</td>
<td>Neurologic disease</td>
</tr>
<tr>
<td></td>
<td>Myelopathy or peripheral neuropathy</td>
</tr>
<tr>
<td></td>
<td>Severe or multilevel spinal stenosis</td>
</tr>
<tr>
<td></td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td></td>
<td>Spina Bifida</td>
</tr>
<tr>
<td></td>
<td>Arachnoiditis</td>
</tr>
<tr>
<td></td>
<td>Increased intracranial pressure</td>
</tr>
<tr>
<td></td>
<td>Cardiac</td>
</tr>
<tr>
<td></td>
<td>Aortic stenosis or fixed cardiac output states (preload dependent states)</td>
</tr>
<tr>
<td></td>
<td>Uncorrected hypovolemia</td>
</tr>
</tbody>
</table>

Table 3. Advantages and disadvantages of regional anesthesia compared to general anesthesia

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced blood loss</td>
<td>Patient acceptance</td>
</tr>
<tr>
<td>Reduced mortality</td>
<td>Airway security</td>
</tr>
<tr>
<td>Reduced risk of thrombosis</td>
<td>Risk of anesthetic failure</td>
</tr>
<tr>
<td>Reduced myocardial infarction</td>
<td>Interference with IONM</td>
</tr>
<tr>
<td>Reduced renal failure</td>
<td>Neurologic complications</td>
</tr>
<tr>
<td>Reduced hypoxic episodes in PACU</td>
<td>Cauda equina syndrome</td>
</tr>
<tr>
<td>Lower pain score and PONV in PACU</td>
<td>Radiculopathy</td>
</tr>
<tr>
<td>Shorter anesthesia time</td>
<td>Myelopathy</td>
</tr>
<tr>
<td>Higher patient satisfaction</td>
<td>Risk of sympathetic block</td>
</tr>
<tr>
<td>Ability to self-position during surgery</td>
<td>Severe bradycardia</td>
</tr>
<tr>
<td></td>
<td>Intraoperative hypotension</td>
</tr>
</tbody>
</table>

IONM, intraoperative neuromonitoring; PACU, postanesthetic care unit; PONV, postoperative nausea and vomiting.

https://doi.org/10.14245/ns.2142584.292
hours or with excessive blood loss. If an awake patient should move during the procedure, the nerve could be injured. Though these problems have never been reported, it is hard to denounce the possibility. 5,13,23,38 Intraoperative neuromonitoring is obse-
te with RA since it interferes with voltage-gated sodium chan-
els in neural synapses, reducing neuro-axis transmission.4

Serious neurologic complications are rare, but RA has a risk of cauda equina syndrome and invariably results in permanent neurologic deficit.41 RA occasionally causes neurologic sequelae such as radiculopathy or myelopathy and in patients with severe spinal stenosis not undergoing lumbar surgery, SA has been associated with an increased risk of new neurologic deficit.42

RA can cause blockade of thoracic sympathetic fibers origin-
atting at T1–5, leading to the development of severe bradycardia or intraoperative hypotension.43 The upper sensory level should be at T10 or higher to provide adequate anesthesia. How-
ever, high levels of motor block are poorly tolerated in the prone position due to lack of abdominal muscle strength and the in-
ability to breathe deeply against increased abdominal pressure.5 Due to these reasons, surgery higher than T10 is not recommend-
ed under neuraxial anesthesia.

CURRENT UTILIZATION OF REGIONAL ANESTHESIA IN SPINAL SURGERY

A recent meta-analysis on this matter analyzed previous ran-
donized studies.3 RA is mostly used in lumbar spine surgery, especially in microdiscectomy and lumbar decompression. As described above, neuraxial anesthesia in spine surgery is limit-
ed to T10, due to strenuous breathing and the possibility of tho-
racic sympathetic blockade, which can lead to severe bradycardia or intraoperative hypotension.3,42 Also, the use of RA illus-
trating lumbar fusion was very limited in literature. However, more recent evidence proposes the possibility of applying RA in other spinal surgeries. In their preliminary paper, Ogrenci et al.44 focused on the possibility of using SA in spinal tumor sur-
gery in elderly patients. Tumorectomy and fusion of the spinal columns were performed in the patient group. Cheng and Chen45 illustrated the use of RA in thoracic spinal stenosis patients. Per-
cutaneous endoscopic thoracic decompression was performed under local anesthesia in patients with lower thoracic lesions. However, they did not specify the anesthetic methods. Several studies, including a randomized controlled trial, used regional anesthesia to perform minimally invasive transforaminal inter-
body fusion and showed a positive outcome.46–48 More recent evidence shows RA can be used in revision surgery for lumbar pseudoarthrosis in a patient with a high risk for GA.49

DISCUSSION

The use of RA for lumbar spine surgery has been strongly debated. Yet RA is a safe and efficacious technique for lumbar spine surgery.13,21,50 The literature regarding spinal anesthesia used for lumbar decompression is largely supportive, suggest-
ing spinal anesthetic is at least comparable with general anes-
thesia in terms of safety and efficacy and that it may be superior to general anesthesia in some ways.2,41 A retrospective review investigated the outcomes of elective lumbar spine surgery un-
der SA to GA.50 The study demonstrated SA is an effective al-
ternative to GA and had lower minor complications incidence.

Compared to GA, RA showed favorable hemodynamic status, reduced blood loss, and postoperative analgesic require-
mments in randomized controlled trials (RCTs).13,24,27,35 Studies show reduced blood loss in patients undergoing spine surgery with RA.13,24,27,34,35 This is most likely due to a combination of sympathetic blockade, producing vasodilation and hypoten-
sion, coupled with lower intra-thoracic pressure generated by spontaneous breathing by patients.21 In the case of an intraop-
erative laceration of the dura (with consecutive loss of CSF), no alteration of the SA effect happens. The receptors are blocked just after the injection, so a loss of CSF does not reduce the SA effect.

Previous researcher38 found deep venous thrombosis was signi-
ficantly more common in patients who had undergone GA than RA. Reduced thrombo-embolic complications have also been reported in spine surgery patients receiving RA. This is probably related to either faster mobility and/or modulation of the hypercoagulable state that occurs and persists after major surgery, and the preventive effect of RA in postoperative inhibi-
tion of fibrinolysis.38,51

In terms of mortality, Guay et al.57 reported a systematic re-
view comparing GA and RA, illustrating a lower mortality rate by approximately 2.5% in surgery with an intermediate-to-high cardiac risk, and the risk of perioperative pneumonia. In an over-
view of randomized trials, mortality was reduced by a third in patients under RA.9

There are conflicting results on lower postoperative pain score.13, 17,24,27,30,50 However, recent RCT showed a strong association with lower pain scores during PACU stay, lower postoperative nau-
sea and vomiting, and high levels of patient and surgeon satis-
faction after RA.1,2,24

On the other hand, RA is believed to increase the risk of sym-
These studies substantiate the possibility of widening the spectrum of using RA in lumbar spine surgery.

A decline in cognition in elderly patients is associated with postoperative delirium.45 In a randomized controlled study, reduced depth of anesthesia decreased the incidence of postoperative delirium.46 It is possible to reduce cognitive decline in elderly patients by decreasing the incidence of postoperative delirium using RA instead of GA.

However, there are extra precautions regarding RA in elderly patients. Advanced age is associated with increased block height. In elderly patients, CSF volume decreases, and specific gravity increases. CSF volume is an important factor contributing to the spread of SA and is negatively correlated.47 Nerve roots are more sensitive to local anesthetics in the geriatric population.

There have been numerous attempts to apply RA in various fields of spinal surgery, especially in minimally invasive surgeries.46,47,48 Researchers showed a possibility of using RA including, but not limited to, a revision spinal fusion,49 robotic minimally invasive fusion,47 and spinal tumors.44 Also, a randomized controlled study depicted the successful use of continuous EA in lumbar endoscopic surgery, which can be used without time limit, unlike other methods of RA, and as a postoperative epidural analgesia.46 In terms of outcome, a recent large-scale study using a national registry showed the type of anesthesia does not affect the outcomes of lumbar decompressions or lumbar fusion.50

In the institution of the senior authors, SA is used as a standard procedure in elective, noninstrumented lumbar spine surgery. Previous spine surgeries as well as antiplatelet therapy are not regarded as a contraindication. A retrospective evaluation of 473 cases showed that per case 19 minutes of anesthesia time could be saved using SA without increasing the risk of complications.7

CONCLUSION

In short, the neuraxis anesthesia technique for lumbar spine surgery is gaining acceptance and is a viable option, especially in the geriatric population. It offers advantages over GA but...
some concerns must be taken into consideration. Nevertheless, concerns can be avoided with caution and mostly theoretical. When deciding which anesthetic method to use, the surgeon must consider the benefits and the risks. The surgeon should bear in mind that the general outcome of spinal surgery using RA has no significant difference with optimal selection of patient and surgery. Hence optimal planning between the surgeon and the patient is crucial. Although not all patients and procedures are adequate to use RA, there is no concrete evidence to be hesitant about using RA. Further work should concentrate on enhancing the quality of RA use by reducing anticipated complications and broadening the spectrum of its clinical use.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

Clinical and Radiological Clues of Traumatic Craniocervical Junction Injuries Requiring Occipitocervical Fusion to Early Diagnosis

Daimon Shiraishi1,2, Yusuke Nishimura1, Isaac Aguirre-Carreno3, Masahito Hara4, Satoshi Yoshikawa1, Kaoru Eguchi1, Yoshitaka Nagashima1, Hiroshi Ito1, Shoichi Haimoto1, Yu Yamamoto2, Howard J. Ginsberg2, Masakazu Takayasu4, Ryuta Saito1

1Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
2Department of Neurosurgery, Inazawa Municipal Hospital, Aichi, Japan
3Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
4Department of Neurosurgery, Aichi Medical University Hospital, Aichi, Japan

Objective: The purpose of this study is to find the clinical and radiographic characteristics of traumatic craniocervical junction (CCJ) injuries requiring occipitocervical fusion (OC fusion) for early diagnosis and surgical intervention.

Methods: We retrospectively reviewed 12 patients with CCJ injuries presenting to St. Michael’s Hospital in Toronto who underwent OC fusion and looked into the following variables; (1) initial trauma data on emergency room arrival, (2) associated injuries, (3) imaging characteristics of computed tomography (CT) scan and magnetic resonance imaging (MRI), (4) surgical procedures, surgical complications, and neurological outcome.

Results: All patients were treated as acute spinal injuries and underwent OC fusion on an emergency basis. Patients consisted of 10 males and 2 females with an average age of 47 years (range, 18–82 years). All patients sustained high-energy injuries. Three patients out of 6 patients with normal BAI (basion-axial interval) and BDI (basion-dens interval) values showed visible CCJ injuries on CT scans. However, the remaining 3 patients had no clear evidence of occipitoatlantal instability on CT scans. MRI clearly described several findings indicating occipitoatlantal instability. The 8 patients with normal values of ADI (atlanto-dens interval) demonstrated atlantoaxial instability on CT scan, however, all MRI more clearly and reliably demonstrated C1/2 facet injury and/or cruciate ligament injury.

Conclusion: We advocate measures to help recognize CCJ injury at an early stage in the present study. Occipitoatlantal instability needs to be carefully investigated on MRI in addition to CT scan with special attention to facet joint and ligament integrity.

Keywords: Craniovertebral junction injuries, Occipitocervical fusion, Ligament injury, High-energy injuries, Magnetic resonance imaging

INTRODUCTION

Although advances in universal spine precautions and spine stabilization techniques have increased the number of patients surviving acute traumatic instability at the craniocervical junction (CCJ), a delay in diagnosis and mismanagement in the Emergency Department (ED) can have potentially devastating consequences.1 Unfortunately, an accurate diagnosis is frequently not established at the time of initial evaluation because altered level of consciousness of patients due to the presence of head injury and multiple other life-threatening injuries could complicate the process of diagnosis.2 Furthermore, difficulty
and inexperience in radiological analysis of CCJ anatomical relationships is another possible cause for misdiagnosis. Therefore, clarification of specific characteristics of trauma and imaging clues suggestive of CCJ injuries is extremely important to raise awareness for this pathology. The advent of magnetic resonance imaging (MRI) revolutionized the assessment of traumatic CCJ injuries by providing unique and accurate information about the integrity of the CCJ ligaments, based on which surgical indication could be determined.3

The purpose of this study is to find the clinical and radiographic characteristics of traumatic CCJ injuries requiring occipitocervical fusion (OC fusion) for early diagnosis and surgical intervention.

MATERIALS AND METHODS

1. Data Collection

We conducted a retrospective study of traumatic CCJ injury cases who required OC fusion at St. Michael's Hospital in Toronto, from 2013 to 2018. All of these cases were preoperatively diagnosed with occipitoatlantal instability on computed tomography (CT) scan and MRI with radiological findings as follows: fracture dislocation and/or disruption of ligaments in the occipitoatlantal segment. Traumatic CCJ injuries requiring only C1–2 fusion were excluded. Following institutional review board approval, 12 consecutive cases were identified. All medical records and spinal imaging studies were retrospectively reviewed to identify the following variables: (1) initial trauma data on ED arrival, (2) associated injuries, (3) imaging characteristics of CT scan and MRI, (4) surgical procedures, surgical complications, and neurological outcome. Based on these data, key points leading to early identification of surgical candidates and surgical outcomes are investigated.

2. Initial Patient Management

On arrival at St. Michael's Hospital, patients were evaluated according to standard Advanced Trauma Life Support protocol. A cross-table lateral conventional radiograph of the spine was obtained as part of the initial trauma evaluation. Head and cervical CT scans (occiput-T3) were routinely obtained in all patients because of the high-energy mechanism of their injuries. Some patients had been seen at outside hospitals for triage and were re-evaluated as acute trauma patients in the aforementioned manner after transfer to St. Michael's Hospital. Once traumatic CCJ injury was identified or suspected, patients were kept on spinal precautions and provisional stabilization secured by a rigid cervical collar or halo vest. Cervical spine MRI was then performed to evaluate the presence of hematoma, ligamentous disruption, facet injury, intervertebral disc injury, and spinal cord injury (SCI).

3. Operative Technique

All cases underwent rigid OC fusion using occipital plates, rods, and screws as soon as the physiological general conditions of patients permitted and prepared for surgery. Surgical procedure was conducted in the operating room in the following sequence. We achieved a fiberoptic awake intubation in the supine position and checked the patient's neurological status to confirm no neurological deterioration was caused by the intubation. The patient was then placed in the spine position on a spinal surgery operating table (Jackson Table; OSI, Union City, CA). At this point, we performed closed reduction and adjustment of cervical alignment under fluoroscopic guidance with great care before the patient was rotated 180°. Rigid titanium screws, rods, and plate devices (Stryker Spine, Allendale, NJ, USA) were used to fixate the affected segments with 3-dimensional navigation (Stryker Spine, Allendale, NJ, USA) or fluoroscopic guidance (Ziehm Vision FD vario 3D, Ziehm Imaging, Nuremberg, Germany). Arthrodesis was undertaken by putting local bone from spinous processes of the affected levels on the decorticated laminae and facet joints.

4. Postoperative Clinical and Radiographic Assessment

Postoperative external immobilization was achieved with a cervical brace. Postoperative cervical CT scans and radiographs were obtained to assess spinal alignment and the adequacy of screws and plates locations. After discharge, radiographic and clinical follow-up data were obtained at the outpatient clinic. Upright flexion-extension lateral radiograph was evaluated for assessment of spinal alignment in all patients on a periodic basis.

RESULTS

1. Initial Trauma Assessment

Table 1 provides a summary of initial trauma assessment data acquired in emergency room. All patients were treated as acute spinal injuries and underwent OC fusion on an emergency basis. Patients consisted of 10 males and 2 females with an average age of 47 years (range, 18–82 years). In all cases, the patients sustained high-energy injuries, such as motor vehicle collision (MVC) with ejection (4 patients) or without ejection (3 patients), fall from height (3 patients), or assault (2 patients). Eight patients
exhibited transient or protracted loss of consciousness at the scene and reduced Glasgow coma scale (GCS) was noted in 7 cases on ED arrival including 3 cases of severely impaired consciousness (GCS 3 and 6).

2. Associated Injuries

Associated injuries were summarized in Table 2. Six cases with closed head injury (CHI) were noted on head CT scan. While only 1 case underwent emergency craniotomy, 5 other cases with CHI were treated conservatively. Seven cases sustained scalp injury or facial fracture, or facial laceration. Subaxial cervical spine injuries were detected in 5 cases, while thoracic or lumbar spine injury was seen in only 1 case. Carotid or vertebral artery injuries were found in 3 cases (1 case had coex-

Table 1. Summary of initial trauma data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, male:female</td>
<td>9:3</td>
</tr>
<tr>
<td>Age (yr), mean (range)</td>
<td>47 (18–82)</td>
</tr>
<tr>
<td>Injury mechanism</td>
<td></td>
</tr>
<tr>
<td>MVC</td>
<td>7</td>
</tr>
<tr>
<td>Fall down</td>
<td>3</td>
</tr>
<tr>
<td>Assault</td>
<td>2</td>
</tr>
<tr>
<td>Ejection from vehicle</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>NA</td>
<td>5</td>
</tr>
<tr>
<td>GCS score, mean ± SD</td>
<td>11.6 ± 1.3</td>
</tr>
<tr>
<td>LOC</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>No</td>
<td>4</td>
</tr>
</tbody>
</table>

MVC, motor vehicle collision; NA, not applied; GCS, Glasgow coma scale; SD, standard deviation; LOC, loss of consciousness.

Table 2. Summary of associated injuries

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed head injury</td>
<td>6 (50)</td>
</tr>
<tr>
<td>Scalp or facial injuries</td>
<td></td>
</tr>
<tr>
<td>Scalp injury</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Facial injury or fracture</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Subaxial C-spine injuries</td>
<td></td>
</tr>
<tr>
<td>C2/3 jumped facet</td>
<td>1 (8)</td>
</tr>
<tr>
<td>C4 vertebral body fracture</td>
<td>1 (8)</td>
</tr>
<tr>
<td>C6 facet fracture</td>
<td>1 (8)</td>
</tr>
<tr>
<td>C7 facet fracture</td>
<td>1 (8)</td>
</tr>
<tr>
<td>C7 lamina fracture</td>
<td>1 (8)</td>
</tr>
<tr>
<td>T- or L-spine injuries</td>
<td></td>
</tr>
<tr>
<td>T3 compression fracture</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Vascular injuries</td>
<td></td>
</tr>
<tr>
<td>Carotid artery injury</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Vertebral artery injury</td>
<td>2 (17)</td>
</tr>
</tbody>
</table>

Table 3. Imaging characteristics of CT scan and MRI

<table>
<thead>
<tr>
<th>Case No.</th>
<th>CT findings</th>
<th>BAI (mm)</th>
<th>BDI (mm)</th>
<th>ADI (mm)</th>
<th>MRI findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1 fracture, O/C1 and C1/2 dislocation</td>
<td>18</td>
<td>15</td>
<td>7</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>C1 fracture, O/C1 and C1/2 dislocation</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>ALL injury, O/C1 and C1/2 facet injury, cruciate ligament injury</td>
</tr>
<tr>
<td>3</td>
<td>C1 and C2 fracture, O/C1 and C1/2 dislocation</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>Spinal cord injury, O/C1 and C1/2 facet injury</td>
</tr>
<tr>
<td>4</td>
<td>C2 fracture, C1/2 dislocation</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>O/C1 facet injury, cruciate ligament injury</td>
</tr>
<tr>
<td>5</td>
<td>C1 fracture, C1/2 dislocation</td>
<td>14</td>
<td>12</td>
<td>2</td>
<td>O/C1 and C1/2 facet injury, cruciate ligament injury</td>
</tr>
<tr>
<td>6</td>
<td>C2 fracture, C1/2 and C2/3 dislocation</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>ALL injury, O/C1 and C1/2 facet injury, cruciate ligament injury</td>
</tr>
<tr>
<td>7</td>
<td>C2 fracture, C1/2 dislocation</td>
<td>19</td>
<td>8</td>
<td>1</td>
<td>ALL injury, O/C1 and C1/2 facet injury cruciate ligament injury</td>
</tr>
<tr>
<td>8</td>
<td>C1 fracture, O/C1 and C1/2 dislocation</td>
<td>19</td>
<td>2</td>
<td>4</td>
<td>ALL injury, O/C1 facet injury cruciate ligament injury</td>
</tr>
<tr>
<td>9</td>
<td>C1 fracture, O/C1 and C1/2 dislocation</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>ALL injury, O/C1 and C1/2 facet injury cruciate ligament injury</td>
</tr>
<tr>
<td>10</td>
<td>C1 and C2 fracture, O/C1 and C1/2 dislocation</td>
<td>11</td>
<td>12</td>
<td>7</td>
<td>O/C1 and C1/2 facet injury cruciate ligament injury</td>
</tr>
<tr>
<td>11</td>
<td>Condyle fracture, O/C1 and C1/2 dislocation</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>O/C1 and C1/2 facet injury</td>
</tr>
<tr>
<td>12</td>
<td>C1 fracture, C1/2 dislocation</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>O/C1 and C1/2 facet injury cruciate ligament injury</td>
</tr>
</tbody>
</table>

Abnormal values of BAI, BDI, ADI are highlighted and underlined.

CT, computed tomography; MRI, magnetic resonance imaging; BAI, basion-axial interval; BDI, basion-dens interval; ADI, atlanto-dens interval; NA, not applied; ALL, anterior longitudinal ligament.
existing carotid and vertebral artery injuries). Antiplatelet therapy was initiated following the surgical procedure and maintained throughout the acute critical management in all cases.

3. Imaging Characteristics of CT Scan and MRI

The abnormal imaging findings that suggested the presence of traumatic CCJ injury are summarized in Table 3. Head and cervical spine CT scans (Occipital bone to T3) was obtained in all patients because of the high-energy mechanism of their injuries after patients were optimized hemodynamically. All but 1 case (case 1) underwent both of cervical spine CT scan and MRI. Case 1 was in a state of deep coma with unilateral blown pupil due to CHI (GCS 3) on arrival and emergency decompressive craniectomy and OC fusion was performed without obtaining MRI. Bony displacement and malalignment were measured and reported in all patients on CT scans. Overall, 6 patients (cases 1, 5, 7, 8, 10, 11) had values of basion-axial interval (BAI; normal < 12 mm) and/or basion-dens interval (BDI; normal < 10 mm) outside of normal limits and 4 patients (cases 1, 8, 10, 12) showed abnormal values of atlanto-dens interval (ADI; normal < 3 mm), respectively. Three patients (cases 2, 3, 9) out of 6 patients (cases 2, 3, 4, 6, 9, 12) with normal BAI and BDI values showed visible occipitoatlantal facet joint dislocation or diastasis based on CT scans. However, the remaining 3 patients (cases 4, 6, 12) had no clear evidence of occipitoatlantal instability on CT scans. MRI clearly described several findings indicating occipitoatlantal instability, such as anterior longitudinal ligament injury, cruciate ligament injury, or occipitoatlantal facet injury. The 8 patients (cases 2, 3, 4, 5, 6, 7, 9, 11) with normal values of ADI demonstrated atlantoaxial malalignment and facet diastasis on CT scan and a diagnosis of atlantoaxial instability was established on CT scans. However, all MRI more clearly and reliably demonstrated C1/2 facet injury and/or cruciate ligament injury. No patient had an isolated occipitoatlantal dislocation without atlantoaxial instability.

4. Surgery, Surgery-Related Complications, and Neurological Outcome

There were no cases of occipitocervical and occipitothoracic pseudoarthrosis or hardware failure. A postoperative surgical site infection occurred in 1 patient (case 5), who was successfully treated with irrigation and debridement, revision of hardware, and antibiotic agents. One patient (case 7) was complicated by postoperative deep venous thrombosis, which was also successfully treated with anticoagulation therapy. Another patient (case 11) who developed hydrocephalus following CHI received ventriculoperitoneal shunt successfully. The mean follow-up duration was 12 months (range, 6–24 months). No patients experienced worsening of neurological symptoms postoperatively. Seven patients (58%) exhibited normal neurological functions (American Spinal Injury Association impairment scale [AIS] grade E) and 5 (42%) suffered incomplete SCI preoperatively. The severity of SCI was AIS grade C (3 patients) and AIS grade D (2 patients). All SCI patients (AIS grade C–D) made improvement by at least one AIS grade postoperatively (Tables 4, 5).

5. Illustrative Case (Case 5)

The patient was an 18-year-old man who was involved in an MVC. He was initially taken to an outside hospital and subsequently transferred to St. Michael’s Hospital. There was no loss of consciousness. Head CT and CT angiography showed no ev-

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical levels (most caudal level)</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>1 (8)</td>
</tr>
<tr>
<td>C3</td>
<td>5 (42)</td>
</tr>
<tr>
<td>C4</td>
<td>5 (42)</td>
</tr>
<tr>
<td>T4</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Other surgeries</td>
<td></td>
</tr>
<tr>
<td>Craniotomy</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Internal fixation of the midfoot</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Fixation of craniofacial fracture</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Tracheostomy</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Ventriculoperitoneal shunt</td>
<td>1 (8)</td>
</tr>
</tbody>
</table>

Postoperative complications

Surgical site infection	1 (8)
Deep venous thrombosis	1 (8)
Hydrocephalus	1 (8)

Table 5. Neurological outcome

<table>
<thead>
<tr>
<th>Preoperative AIS grade</th>
<th>Postoperative AIS grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
</tbody>
</table>

AIS, American Spinal Injury Association impairment scale.
The difficulties in prompt diagnosis of traumatic CCJ injury were highlighted and recognized over the past decade.1,5-11 As mortality rates are reportedly extremely low in patients who are correctly diagnosed with CCJ injury on initial trauma evaluation,12-14 we need to identify the characteristics of the trauma and imaging clues serving as warning signs for CCJ injury at the initial trauma assessment. In the present study, all patients were involved in high-energy injuries mainly affecting head and face. Eight patients had transient or protracted loss of consciousness on arrival, indicating severe blow to the brain. Closed head injuries were present in 6 patients (50%) and impaired consciousness with reduced GCS was noticed in 6 cases (50%). Altered level of consciousness due to brain injury, hemodynamic instability, or alcoholic consumption as well as severe pain that distracts from traumatic CCJ injuries contributed to diagnostic difficulties. We also found high rate of scalp or facial injuries, which are suggestive of CCJ injury. Spinal cord deficits were identified in 5 patients on initial evaluation (42%) in the present study; which were AIS grade C or D deficits. Neurological symptoms caused by SCI could facilitate the identification of CCJ injury.

In recent years, the preference of initial imaging has shifted from x-ray to CT scans, since CCJ injuries are often overlooked in x-ray imaging.15 The analysis of the present study demonstrated generally accepted indexes (BAI, BDI, and ADI) on CT scans were not reliable enough and other CT scan findings such as facet diastasis and facet dislocation were particularly useful findings. Facet diastasis and facet dislocation are closely related to the damage of ligaments.15,16 Several important ligaments hold bony structures and facet joints in the CCJ, including the cruciate ligament, the paired alar ligaments, the tectorial mem-

Fig. 1. (Case 5) Preoperative computed tomography scan (A, B), preoperative magnetic resonance imaging (C, D), postoperative x-ray (E). Avulsion fractures of anterior arch of atlas with widening of BDI (A; arrow), cephalad displacement of atlas (A; arrowhead), malalignment of the atlantooccipital joints with posterior widening of the O/C1 facet joints (B; arrow) and C1/2 facet joints. Severe injury of anterior longitudinal ligament and anterior atlantooccipital membrane (C; arrow), tectorial membrane and cruciate ligaments (C; arrowhead). There was apparent distraction of the O/C1 (D; arrow) and C1/2 facet joints with interfacet fluid signal. OC3 fusion was successfully performed (E).
brane, the apical ligament, and the anterior and posterior atlantooccipital membranes. Although these ligaments play pivotal roles for stabilization, traumatic CCJ injuries have historically been recognized as osseous fractures. Ligamentous injuries at the CCJ can cause bony dislocations and facet diastasis leading to severe and insidious instability without associated fractures. We encountered several cases with obvious bony dislocations and facet diastasis on CT scans, however, we should emphasize the existence of cases with the ligamentous injuries without clear evidence of osseous displacements on CT scans. Atlantoaxial instability could be made diagnosis solely by detailed analysis of CT scans based on facet dislocations and facet diastasis even with normal values of ADI though the diagnosis should be confirmed using MRI, which more clearly and reliably demonstrated atlantoaxial facet injury and/or cruciate ligament injury. On the other hand, several reports emphasized the existence of trauma patients of occipitoatlantal instability with normal or near-normal CT scans, which were narrowly diagnosed on MRI. It is extremely difficult to detect occipitoatlantal instability solely by CT scans in patients who demonstrate normal values of the BAI, BDI with no clear evidence of occipitoatlantal malalignment or diastasis of the occipitoatlantal facet. These clear differences in the process of diagnosis between occipitoatlantal and atlantoaxial instability may come from the differences of function and range of motion between these facet joints. Atlantoaxial facet joints are structurally more complicated and more mobile with wide range of axial rotation (48.53° on average) than occipitoatlantal facet joints with flexion-extension motion (18.7° on average). Therefore, diastasis of the occipitoatlantal facet joints occurring after traumatic CCJ injury may be more likely to spontaneously reduce with normal joint heights even as the patient has significant occipitoatlantal instability. Therefore, CT measurements alone can overlook purely ligamentous injuries, and additional MRI analysis is essential particularly in occipitoatlantal instability. This is especially true of unconscious patients who cannot complain of any subjective symptoms and cannot take neurological assessment. The present study showed occipitoatlantal injury was accompanied by concomitant atlantoaxial injury even as isolated atlantoaxial injury is frequently observed. This unique traumatic relationship was clearly verified by MRI assessment. In this context, the possible coexistence of occipitoaxial instability should be born in mind once atlantoaxial dislocation is suspected. MRI is currently an integral part of diagnostic process in CCJ injuries, however, Dyas et al. indicated the disruption of alar ligaments, one of the main ligamentous stabilizers in CCJ, was difficult to be recognized on MRI. The whole ligamentous structure of CCJ needs to be evaluated because identification of individual ligament may be difficult. The ability of MRI to detect the integrity of the ligaments is not always perfect depending on the imaging quality of MRI, therefore comprehensive assessment of mechanism of injury, associated injury, neurological symptoms, and consciousness status is essential to accurately reach the diagnosis.

Rigid cervical orthosis or halo immobilization should be continued until the patient is prepared for surgical intervention. The most appropriate preoperative provisional stabilization has to be decided considering the timing of surgery, the degree of instability, and the patient’s general condition, neurological status, and other spine injuries. Traumatic CCJ injury mainly comprises ligamentous disruption and could lead to significant neurological deterioration without surgical intervention. Posterior OC fusion is the treatment of choice in most cases and the development of plate, rod, and screw system has allowed us to attain successful outcomes without the need for postoperative halo immobilization with high bony fusion rate of more than 90%.

In summary, as CCJ stability is largely dependent on ligamentous integrity, MRI has greater sensitivity for detecting CCJ instability by analysis of disc disruption, facet injuries, and ligament injuries than CT scans or x-ray alone and the addition of MRI to CT scans can alter patient management. The classification system where MRI findings are fully integrated needs to be developed particularly for occipitoatlantal instability.

CONCLUSION

We advocate measures to help recognize CCJ injury at an early stage in the present study. Firstly, these measures have put emphasis on the identification of clinical clues (high-energy trauma, transient or protracted loss of consciousness, reduced consciousness level, CHI, scalp, or facial injury). Secondly, careful imaging assessment is necessary based on both CT scan and MRI. Occipitoatlantal instability is carefully investigated on MRI in addition to CT scan with special attention to facet joint and ligament integrity. OC fusion using occipital plate, rod, and screws in a timely manner brings great outcomes. We found that following these measures give great chances to functionally improve even patients with severe neurological symptoms. More cases with CCJ injury are needed to be accumulated to investigate and establish correct diagnostic criteria for CCJ instability.
CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

22. Soussian FG, Patel PD, Elsherif MA. Atlanto-occipital dissociation in the setting of relatively normal radiologic findings. World Neurosurg 2020;143:405-11.
Original Article

Surgical and Functional Outcomes of Expansive Open-Door Laminoplasty for Patients With Mild Kyphotic Cervical Alignment

Narihito Nagoshi, Satoshi Nori, Osahiko Tsuji, Satoshi Suzuki, Eijiro Okada, Mitsuru Yagi, Masaya Nakamura, Morio Matsumoto, Kota Watanabe

Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan

Objective: To evaluate the cervical dynamics, neurological function, pain, and quality of life in patients with mild cervical kyphotic alignment who underwent expansive unilateral open-door laminoplasty (ELAP).

Methods: In this retrospective single-center study, we reviewed the surgical outcomes of 80 patients with cervical spondylotic myelopathy who were followed for at least 2 years. The patients were categorized into the preoperative kyphotic group (C2–7 angle < 0°) and non-kyphotic group (angle ≥ 0°). We compared clinical information, radiographic parameters, Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ) scores, and cervical Japanese Orthopaedic Association (JOA) scores between the groups.

Results: The kyphotic and non-kyphotic groups comprised 17 and 63 patients, respectively. The preoperative C2–7 angles were -3.7° in the kyphotic group and 15.4° in the non-kyphotic group (p < 0.01). In the kyphotic group, kyphotic alignment improved to lordosis at the final follow-up (2.6°, p = 0.01). The preoperative (16.4° vs. 24.1°, p < 0.01) and final-follow-up (17.8° vs. 24.5°, p < 0.01) C7 slopes were significantly smaller in the kyphotic group. ELAP reduced pain in the arms or hands (p = 0.02) and improved the JOA scores (p < 0.01) in the kyphotic group. Patient-reported outcomes assessed using the JOACMEQ showed comparable effective rates in both groups.

Conclusion: Patients with mild cervical kyphosis showed smaller C7 slopes as a compensatory mechanism. Kyphotic angles significantly improved to lordosis after ELAP, resulting in favorable clinical outcomes. ELAP is a useful surgical option for patients even if they present mild kyphotic cervical angles.

Keywords: Cervical spondylotic myelopathy, Expansive unilateral open-door laminoplasty, Kyphotic cervical alignment

INTRODUCTION

Cervical spondylotic myelopathy (CSM) is a degenerative disease that causes neurological deficits by spinal cord compression. To halt the dysfunctional progress and initiate neurological recovery, surgical treatment is frequently performed. Numerous studies have demonstrated the usefulness of unilateral open-door laminoplasty for CSM and have reported beneficial surgical outcomes.1-3

Laminoplasty is a safe and less invasive technique that does not necessitate interspinal fixation surgery. The indication of laminoplasty for patients with CSM should be considered cautiously because preoperative malalignment could affect surgical results.1,4-9 Chiba et al.1 reported that functional recovery was significantly negatively correlated with the degree of preoperative cervical kyphosis. Miyamoto et al.9 demonstrated that pos-
terior fixation surgery was more suitable for patients with >5° local kyphosis in view of the acquisition of postoperative lordotic alignment and neurologic improvement. Other studies reported poor neurological improvement after laminoplasty in patients whose C2–7 sagittal angles were <0°. In contrast to these adverse effects of preoperative cervical kyphotic alignment, Uchida et al. evaluated the surgical outcomes of patients who had cervical local kyphosis of >10° preoperatively and underwent either laminoplasty or anterior spondylectomy. They reported comparable recovery of cervical Japanese Orthopaedic Association (JOA) scores in both groups after long-term follow-up despite the fact that cervical kyphosis was maintained in patients who underwent only laminoplasty. The results of these studies suggest that there is no consensus for the treatment of patients with CSM with baseline cervical kyphosis. Although the modified K-line is a useful and convenient method to decide surgical indication of posterior decompression surgery, previous studies targeted only double-door laminoplasty, and there is limited evidence of comprehensive clinical results in terms of cervical alignment changes and patient-reported functional outcomes postoperatively.

Therefore, it is quite meaningful from our therapeutic experience to present the surgical outcomes of patients who had preoperative cervical spinal kyphosis and underwent unilateral open-door laminoplasty. This study aimed to investigate the cervical dynamics, neurological function, pain, and quality of life (QoL) in these patients.

MATERIALS AND METHODS

1. Participants
This study included 80 patients with clinically and radiographically confirmed CSM who were treated using expansive unilateral open-door laminoplasty (ELAP) at one institution between 2008 and 2014. Nine board-certified spinal surgeons performed the surgeries. Patients were included if they (1) presented with at least one clinical sign of myelopathy, (2) exhibited cervical spinal cord compression on magnetic resonance imaging (MRI) or computed tomography, and (3) had no history of cervical spine surgery. Patients were excluded if they were asymptomatic; were diagnosed with ossification of the posterior longitudinal ligament, active infection, neoplastic spinal disease, rheumatoid arthritis, or ankylosing spondylitis; or had been treated for osteoarthritis of the hip or knee with concomitant lumbar canal stenosis.

The patients were categorized into the preoperative cervical kyphotic group (C2–7 angle <0°) and nonkyphotic group (C2–7 angle ≥0°).

This study received ethical approval from the Institutional Review Board of Keio University School of Medicine (20110142). We certify that all applicable institutional regulations concerning the ethical use of human volunteers were followed during the course of this study.

2. Surgical Procedure
ELAP was performed as described previously. Briefly, the laminae were exposed through a midline incision, followed by the dissection of the bilateral paracervical muscles. A gutter was created using a drill at the junction of the lamina and facet joint, and the ventral cortex of the lamina was perforated. Another gutter was created in the opposite side as a hinge, and the lamina door was lifted and fixed in the expanded position using sutures or plates (Centerpiece Plate Fixation System; Medtronic Sofamor Danek, Memphis, TN, USA). The patients began walking without a brace the day after surgery.

3. Data Collection
We retrospectively collected the demographic information, medical history, and imaging data of the patients and evaluated their functional status preoperatively and at the final follow-up (at least 2 years postoperatively) using the cervical JOA scores and JOA Cervical Myelopathy Evaluation Questionnaire (JOACMEQ). We did not set a limit for the maximum follow-up duration. Pain, stiffness, and numbness were assessed using the visual analogue scale (VAS) included in the JOACMEQ. Surgery-related events within 30 days postoperatively were defined as perioperative complications. The JOACMEQ defines effective treatment as (1) a posttreatment score of ≥20 points above the pretreatment score or (2) a pretreatment score of <90 and a posttreatment score of ≥90. Patients with both pretreatment and posttreatment scores of ≥90 were counted but excluded from further analysis. A group’s effective rate was calculated as follows: [(number of patients judged “effective”) / [(total number of patients in the group) − (number of patients with pre- and posttreatment scores of ≥90)]. The postoperative recovery rate (JOA recovery rate), described by Hirabayashi et al. was calculated as follows: recovery rate (%) = (postoperative JOA score – preoperative JOA score) × 100/(17−preoperative JOA score).

4. Imaging
Cervical alignment was assessed by measuring the intermittent C2–7 angles, which were determined by tangential lines on
the posterior edge of the target vertebral bodies, on plain radiographs in the neutral position. We calculated the cervical range of motion (ROM) by subtracting the flexion from the extension C2–7 angles. The C7 slope was measured as the angle between the superior endplate of C7 and a horizontal line. The C7 slope was used as a substitute for the T1 slope.16,17 The C2–7 sagittal vertical axis (SVA) was defined as the distance between the C2 plumb line and posterior superior corner of the C7 vertebral body.

5. Statistical Analysis

Continuous variables and frequencies were presented as mean ± standard deviation, and the unpaired t-test was performed to compare these parameters between the groups. Categorical variables were shown as percentages and were compared using the chi-square test. Changes between the preoperative and final JOA scores, VAS scores, and imaging findings were assessed using paired t-tests. All statistical analyses were performed using IBM SPSS Statistics ver. 26.0 (IBM Co., Armonk, NY, USA). A p-value of < 0.05 was considered significant.

RESULTS

1. Demographic Characteristics

Table 1 shows the demographic characteristics of patients who underwent ELAP at our institution. Seventeen patients exhibited preoperative cervical kyphosis (kyphotic group), and 63 patients exhibited preoperative cervical lordotic alignment (non-kyphotic group). The average age was younger in the kyphotic group (59.5 ± 13.4 years vs. 65.8 ± 11.3 years), although it was not statistically significant (p = 0.053). There were more men in the kyphotic group (82.4%) than in the nonkyphotic group (71.4%) (p = 0.54). Body mass index and duration of initial symptoms were not significantly different between the groups. The average follow-up periods were 3.1 ± 0.8 years and 2.8 ± 0.5 years in the kyphotic and nonkyphotic groups, respectively (p = 0.11). Regarding comorbidities, there were no significant differences in the prevalence of hypertension (p = 0.32), diabetes mellitus (p = 0.32), cardiac disease (p = 0.38), cerebrovascular disease (p = 0.80), and psychiatric disease (p = 0.80). No patient had renal, respiratory, or rheumatologic diseases.

2. Surgical Characteristics

Surgical information is presented in Table 2. The average operative duration was 83.4 ± 26.5 minutes in the kyphotic group and 80.1 ± 28.3 minutes in the nonkyphotic group (p = 0.67). The average numbers of operated laminae were also comparable between the groups (4.7 ± 0.9 vs. 4.6 ± 0.9; p = 0.71). One (5.4%) and 12 patients (19.0%) in the kyphotic and nonkyphotic groups, respectively, underwent laminoplasty with plates (p = 0.28). For C2 decompression, only laminotomy (not laminoplasty) was performed to drill a caudal portion of the lamina. Only 1 patient (5.4%) in the kyphotic group and 2 (3.2%) in the nonkyphotic group underwent this procedure. At the C3 level, 13 (76.5%) and

| Table 1. Demographic characteristics of patients with kyphotic and nonkyphotic cervical alignment |
|----------------|----------------|----------------|
| Characteristic | Kyphotic group (n = 17) | Nonkyphotic group (n = 63) | p-value |
| Age (yr) | 59.5 ± 13.4 (32–76) | 65.8 ± 11.3 (39–86) | 0.05 |
| Sex (% male) | 82.4 | 71.4 | 0.54 |
| Body mass index (kg/m\(^2\)) | 24.5 ± 4.6 (18.8–33.5) | 24.1 ± 3.6 (17.8–34.2) | 0.71 |
| Duration of symptoms (mo) | 61.0 ± 88.1 (1–360) | 36.6 ± 45.4 (1–240) | 0.29 |
| Follow-up period (yr) | 3.1 ± 0.8 (2.0–5.0) | 2.8 ± 0.5 (2.0–5.0) | 0.11 |
| Hypertension (%) | 23.5 | 36.5 | 0.32 |
| Diabetes mellitus (%) | 5.9 | 14.3 | 0.32 |
| Cardiac disease (%) | 5.9 | 1.6 | 0.38 |
| Renal disease (%) | 0 | 0 | - |
| Cerebrovascular disease (%) | 0 | 1.6 | 0.80 |
| Respiratory disease (%) | 0 | 0 | - |
| Rheumatologic disease (%) | 0 | 1.6 | 0.80 |
| Psychiatric disease (%) | 0 | 1.6 | 0.80 |

Values are presented as mean ± standard deviation (range) unless otherwise indicated.
Outcomes for Patients With Kyphotic Cervical Alignment

Nagoshi N, et al.

Table 2. Surgical characteristics and perioperative information

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Kyphotic group (n = 17)</th>
<th>Nonkyphotic group (n = 63)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative duration (min)</td>
<td>83.4 ± 26.5 (43–137)</td>
<td>80.1 ± 28.3 (32–209)</td>
<td>0.67</td>
</tr>
<tr>
<td>Number of operated laminae</td>
<td>4.7 ± 0.9 (3–6)</td>
<td>4.6 ± 0.9 (2–6)</td>
<td>0.71</td>
</tr>
<tr>
<td>Use of laminar plates (%)</td>
<td>5.8</td>
<td>19.0</td>
<td>0.28</td>
</tr>
<tr>
<td>Duration of hospital stay (days)</td>
<td>15.9 ± 7.4 (9–42)</td>
<td>14.5 ± 3.7 (9–28)</td>
<td>0.29</td>
</tr>
<tr>
<td>Perioperative complications (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 palsy</td>
<td>0</td>
<td>3.2</td>
<td>0.62</td>
</tr>
<tr>
<td>Surgical site infection</td>
<td>5.9</td>
<td>0</td>
<td>0.21</td>
</tr>
<tr>
<td>Epidural hematoma</td>
<td>5.9</td>
<td>3.2</td>
<td>0.52</td>
</tr>
<tr>
<td>Dural tear</td>
<td>0</td>
<td>1.6</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation (range) unless otherwise indicated.

Table 3. Imaging characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Kyphotic group (n = 17)</th>
<th>Nonkyphotic group (n = 63)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2–7 angle (neutral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperation (°)</td>
<td>-3.7 ± 3.0 (-11.0 to -0.1)</td>
<td>15.4 ± 8.0 (1.2–38.9)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Final follow-up (°)</td>
<td>2.6 ± 10.2 (-15.0 to 22.8)</td>
<td>13.8 ± 9.9 (-4.1 to 37.8)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>C2–7 angle (flexion)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperation (°)</td>
<td>-22.2 ± 10.2 (-43.0 to -1.0)</td>
<td>-9.4 ± 9.8 (-27.3 to 17.9)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Final follow-up (°)</td>
<td>-14.9 ± 9.1 (-30.0 to -2.4)</td>
<td>-2.4 ± 10.4 (-39.1 to 25.1)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>C2–7 angle (extension)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperation (°)</td>
<td>12.5 ± 11.3 (-9.0 to 30.5)</td>
<td>27.1 ± 7.6 (11.6–47.0)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Final follow-up (°)</td>
<td>12.0 ± 11.3 (-6.6 to 31.6)</td>
<td>23.1 ± 10.0 (-0.4 to 44.3)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cervical range of motion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperation (°)</td>
<td>34.2 ± 12.8 (14.5–58.2)</td>
<td>36.6 ± 10.6 (11.3–61.3)</td>
<td>0.45</td>
</tr>
<tr>
<td>Final follow-up (°)</td>
<td>26.9 ± 10.3 (9.3–47.1)</td>
<td>25.5 ± 8.8 (3.9–44.3)</td>
<td>0.59</td>
</tr>
<tr>
<td>C7 slope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperation (°)</td>
<td>16.4 ± 5.3 (7.7–25.5)</td>
<td>24.1 ± 7.5 (8.6–44.5)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Final follow-up (°)</td>
<td>17.8 ± 6.5 (6.8–25.6)</td>
<td>24.5 ± 8.1 (8.8–53.8)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Intermediate C2–7 sagittal vertical axis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperation (mm)</td>
<td>26.5 ± 11.8 (7.0–56.3)</td>
<td>22.3 ± 14.1 (-7.5 to 57.5)</td>
<td>0.27</td>
</tr>
<tr>
<td>Final follow-up (mm)</td>
<td>22.3 ± 15.0 (-5.8 to 46.4)</td>
<td>25.2 ± 14.8 (-8.3 to 70.0)</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation (range) unless otherwise indicated.

52 patients (82.5%) in the kyphotic and nonkyphotic groups, respectively, underwent decompression. In the kyphotic group, 3 of 13 patients underwent laminoplasty, whereas the other 10 patients underwent total laminectomy. In the nonkyphotic group, laminoplasty was performed for 7 of 52 patients, and the other 45 patients underwent laminectomy. For C7 laminae, 12 (70.6%) and 45 patients (71.4%) in the kyphotic and nonkyphotic groups, respectively, underwent surgical decompression. In the kyphotic group, 2 of 12 patients underwent laminoplasty, whereas the other 10 patients underwent laminotomy to decompress a rostral portion of the lamina. In the nonkyphotic group, laminoplasty was performed for only 3 of 45 patients, and the other 42 patients underwent laminotomy.

The length of hospital stay was 15.9 ± 7.4 days in the kyphotic group and 14.5 ± 3.7 days in the nonkyphotic group (p = 0.29). In terms of perioperative complications, the occurrence rates of C5 palsy (p = 0.62), surgical site infection (p = 0.21), epidural hematoma (p = 0.52), and dural tear (p = 0.79) did not show significant differences.
3. Imaging Characteristics

The preoperative intermediate C2–7 angles were -3.7° ± 3.0° (range, -11.0° to -0.1°) in the kyphotic group and 15.4° ± 8.0° (range, 1.2°–38.9°) in the nonkyphotic group (p < 0.01) (Table 3). This difference was maintained postoperatively at the final follow-up in the kyphotic (2.6° ± 10.2°) and nonkyphotic (13.8° ± 9.9°) groups (p < 0.01). With regard to temporal changes in cervical alignment, the kyphotic group presented significant improvement to lordotic alignment at the final follow-up (p = 0.01), whereas the nonkyphotic group maintained comparable alignment pre- and postoperatively (p = 0.16). The preoperative cervical ROM was 34.2° ± 12.8° in the kyphotic group and 36.6° ± 10.6° in the nonkyphotic group (p = 0.45) and changed to 26.9° ± 10.3° and 25.5° ± 8.8°, respectively, at the final follow-up (p = 0.59). On evaluating ROM temporally, the angle reduced postoperatively in the nonkyphotic (p < 0.01) and kyphotic (p = 0.054) groups. The C7 slope was significantly smaller in the kyphotic group preoperatively (16.4° ± 5.3° vs. 24.1° ± 7.5°, p < 0.01) and at the final follow-up (17.8° ± 6.5° vs. 24.5° ± 8.1°, p < 0.01). The preoperative intermediate C2–7 SV A were 26.5 ± 11.8 mm and 22.3 ± 14.1 mm in the kyphotic and nonkyphotic groups, respectively (p = 0.27). The SVA at the final follow-up was similar between the groups (22.3 ± 15.0 mm vs. 25.2 ± 14.8 mm, p = 0.47). Temporal changes in the C7 slope and C2–7 SVA did not show significant differences in both groups. The breakdown of each neutral C2–7 alignment in the kyphotic group is shown in Table 4.

4. Surgical Outcomes

The cervical JOA scores, which were used to evaluate neurologic function, were 11.4 ± 3.1 in the kyphotic group and 11.6 ± 2.7 in the nonkyphotic group (p = 0.82) (Table 5). Equivalent improvement of neurologic function was observed in both groups at the final follow-up (13.8 ± 2.5 vs. 14.0 ± 2.5, p = 0.84). Each group showed significant functional recovery when comparing the baseline and final JOA scores temporally (p < 0.01). The recovery rates of the JOA scores were also similar between the groups (46.7% vs. 46.4%, p = 0.97). Linear multiple regression analysis was performed to evaluate the JOA scores at the final follow-up after adjusting for variables, and there was no statistically significant difference between the groups.

Among the 9 attending surgeons, 6 (group A) performed surgeries for patients in both the kyphotic and nonkyphotic groups, and the other 3 (group B) performed surgeries for only patients in the nonkyphotic group. We compared the clinical results between group A (n = 46) and group B (n = 17) in the nonkyphotic group, which revealed no significant differences in JOA scores at preoperation (11.6 ± 2.7 vs. 11.4 ± 2.9, p = 0.76) and final follow-up (13.9 ± 2.4 vs. 14.1 ± 2.6, p = 0.85).

On comparing the surgical outcomes between patients whose cervical alignment progressed to more kyphosis (n = 5; patients 1, 3, 4, 15, 17) and improved to lordosis (n = 12; all other patients) in the kyphotic group (Table 4), the preoperative C2–7 angles were -4.9° ± 4.6° and -3.2° ± 2.1°, respectively (p = 0.48). The preoperative cervical JOA scores were 10.3 ± 3.8 and 11.8 ± 2.8 (p = 0.36), respectively, and this difference was comparable at the final follow-up (13.6 ± 2.1 vs. 13.9 ± 2.8, p = 0.82).

The following 4 aspects were evaluated using VAS: pain or stiffness in the neck or shoulders, tightness in the chest, pain or numbness in the arms or hands, and pain or numbness from the chest to toe. The results were comparable for all aspects between the groups both pre- and postoperatively (Table 5). In the kyphotic group, the VAS scores for pain or numbness in the arms or hands significantly reduced postoperatively (58.8 ± 33.0 mm to 39.4 ± 31.5 mm, p = 0.02). In the nonkyphotic group, the VAS scores significantly reduced for pain or numbness in the
arms or hands (61.0 ± 31.4 mm to 39.7 ± 32.3 mm, p < 0.01) and from the chest to toe (39.8 ± 33.5 mm to 31.7 ± 35.2 mm; p = 0.02). Other scales did not show statistically significant changes.

The JOACMEQ results revealed effective rates of 36.4% (4 of 11) and 58.5% (31 of 53) for cervical spine function, 30.8% (4 of 13) and 43.2% (19 of 44) for upper extremity function, 46.2% (6 of 13) and 34.7% (17 of 49) for lower extremity function, 16.7% (2 of 12) and 20.0% (10 of 50) for bladder function, and 18.8% (3 of 16) and 31.7% (20 of 63) for QoL in the kyphotic and non-kyphotic groups, respectively (Table 5). None of the rates differed significantly between the groups. Binomial logistic regression analysis was performed to evaluate the effective rates after adjusting for variables, and there was no significant difference between the groups.

5. Case Presentation

1) Patient 2

A 37-year-old man who was diagnosed with CSM was referred to our institution for surgical treatment. He complained of hand clumsiness and gait impairment, and his cervical JOA score was 14. In radiographic findings, the C2–7 angle was -7.4°, and the C7 slope was 16.2° (Fig. 1A). T2-weighted MRI revealed multiple cervical canal stenosis from C3 to C7 and intramedullary high signal intensity at the C6/7 spinal level (Fig. 1B). Because dynamic canal stenosis was identified at the C4/5 and C5/6 levels, he underwent ELAP from the C3 to C7 laminae. His symptoms improved postoperatively, and at 5 years postoperatively, his JOA score recovered to 15, C2–7 angle was 7.6°, and C7 slope was 17.1° (Fig. 1C). MRI showed expanded cervical canal space and maintenance of favorable decompression (Fig. 1D).

2) Patient 10

A 66-year-old man complained of bilateral hand clumsiness and numbness of the upper extremities. His cervical JOA score was 15. Radiographic findings showed a C2–7 angle of -2.5° and...
Outcomes for Patients With Kyphotic Cervical Alignment

Nagoshi N, et al.

https://doi.org/10.14245/ns.2142792.396
www.e-neurospine.org

C7 slope of 22.6° (Fig. 2A). T2-weighted MRI revealed multiple canal stenosis with intramedullary high signal intensity (Fig. 2B). He underwent ELAP from the C3 to C7 laminae. His postoperative course was uneventful. At 5 years postoperatively, his JOA score recovered to 15.5, C2–7 angle was 22.8°, and C7 slope was 25.1° (Fig. 2C). MRI revealed decompression of the cervical spinal cord (Fig. 2D).

DISCUSSION

In this study, ELAP was performed for patients with CSM with kyphotic cervical alignments, which were ≤ -11° in C2–7 angles. This kyphotic angle was sustained by compensatory lower angle of the C7 slope compared with that in patients with preoperative C2–7 lordotic alignment (Table 3). However, even in patients with cervical kyphosis, the alignment significantly improved to lordotic angle postoperatively. Regarding clinical outcomes, perioperative complications equivalently developed in the kyphotic and nonkyphotic groups (Table 2). The surgical treatment reduced pain in the arms or hands and recovered the neurologic status, which was evaluated using JOA scores (Table 5). The patient-reported outcomes assessed using the JOAC-MEQ also revealed comparable effective rates of cervical spine, extremity, and bladder functions and QoL in both groups. These results indicate that ELAP is a useful surgical option for patients even if they present mild kyphotic cervical angles.

Several studies have reported the progression of kyphotic angles after laminoplasty.5-7 Although we targeted patients with only mild kyphotic angles, our findings indicate that patients with cervical spinal kyphosis had the potential to attain lordotic angles postoperatively. In corroboration, Kim et al.18 reported that the subpopulation of patients who had kyphotic cervical angles...
alignment did not show development of kyphosis even after laminoplasty. These patients had radiographically reducible lordotic alignment before surgery at the extension view of the cervical spine. In our patients with preoperative cervical kyphosis, the average baseline C2–7 angles at extension was 12.5° (Table 3), which was within the acceptable range as reducible lordotic alignment. Therefore, patients with mild cervical kyphosis in our study were deemed to have favorable radiographical and functional outcomes after ELAP. Thus, if surgical treatment is necessary for patients with cervical spinal kyphosis, the evaluation of alignment at extension could be an important indicator to decide the actual operative technique.

In the present study, the C7 slope was significantly smaller in patients with preoperative cervical kyphosis than in patients with lordotic alignment (Table 3). Although Ames et al. used the T1 slope as a substitute parameter of the C7 slope, they reported that lower T1 slope was significantly correlated with smaller C2–7 lordosis. In their study, they demonstrated that cervical alignment showed adaptive characteristics and changes relative to the other thoracic and lumbar spinal segments to maintain the head over the pelvis and horizontal gaze. Therefore, we believe that kyphotic cervical curvature in our study was not the cause but rather the result of a smaller C7 slope by a compensatory mechanism of spinal dynamics. With regard to postoperative cervical alignment, Kim et al. reported that patients with larger preoperative T1 slopes presented more kyphotic alignment changes after cervical laminoplasty. In contrast, C7 slopes in patients with cervical kyphosis in the present study were comparable before and after surgery within the ranges of lower angles (Table 3), and these results led to the prevention of kyphotic changes. However, because the C7 slope gradually increases with age, cervical kyphosis may progress in the future after surgical intervention. Therefore, careful attention should be paid regarding changes in cervical alignment with longer follow-up periods.

Based on our results, we did not conclude the limitation of the indication for ELAP in patients with kyphotic cervical alignment due to the lack of patients who had hyperkyphosis. Generally, the current therapeutic strategy for cervical deformity is spinal fixation surgery; therefore, we avoided ELAP for patients with excessive kyphotic angles of the cervical spine preoperatively. Several studies have reported that kyphotic angles of >5°–10° increase the risk of malalignment progression and functional deterioration if laminoplasty is performed. The average kyphotic angle in our subjects was 3.7° in the kyphotic group, and this small angle resulted in the prevention of worsening kyphotic deformity postoperatively. Further evidence is needed to achieve a consensus regarding the indication of surgical techniques with and without spinal fixation for cervical kyphosis.

Several limitations were noted in this study. First, this was a retrospective study, which inevitably has a low evidence level. Second, we did not analyze global spinal alignment, which could affect cervical dynamics after laminoplasty. Third, differences in postoperative medication and rehabilitation, which were left to the surgeon’s discretion, could have affected the clinical outcomes. Finally, the results should be carefully interpreted because this study was performed using a single surgical technique and assessment questionnaire at a single institution.

CONCLUSION

We evaluated the cervical spinal dynamics and functional outcomes of patients with mild kyphotic cervical alignment who underwent ELAP. The average preoperative C2–7 angle in the kyphotic group was -3.7°, and these patients presented favorable surgical outcomes regarding neurologic function, pain, and QoL, with a reduction in the cervical alignment to lordotic angle. However, this beneficial result was achieved in patients who had cervical alignment within -10° and were followed up for only a few years. Further studies are necessary to evaluate the efficacy of ELAP for more kyphotic alignment with a longer observational period.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

Commentary on “Surgical and Functional Outcomes of Expansive Open-Door Laminoplasty for Patients With Mild Kyphotic Cervical Alignment”

Dongwuk Son1,2

1Department of Neurosurgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
2Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea

I read the article titled “Surgical and functional outcomes of expansive open-door laminoplasty for patients with mild kyphotic cervical alignment”1 with interest that raised questions about the preoperative kyphotic alignment, which is a contraindication to laminoplasty. In the World Federation of Neurosurgical Society (WFNS) recommendation, preoperative straight or lordotic alignment is the candidate for laminoplasty, and anterior cervical discectomy and fusion (ACDF) or laminectomy and posterior fusion are recommended for kyphotic alignment for cervical spondylotic myelopathy (CSM).2-6 However, ACDF and posterior fusion are expected to have high complications in elderly patients with poor bone quality.7,8 Clinically, there was a demand to expand laminoplasty to broader indications, such as mild kyphotic alignment. I read impressively the results of over 14 years of laminoplasty from the author’s institution. They reported no significant differences in the final average recovery rates among those with different preoperative alignments in the CSM group, but patients with preoperative kyphosis in the OPLL (ossification of the posterior longitudinal ligament) group had much lower recovery rates than those with lordotic and straight alignments although statistical significance was not detected due to the small sample size.9 However, in this study, the authors could find the efficacy of laminoplasty on mild kyphotic alignment in more cases. Recently, many dynamic concepts, not static concepts, have been presented in laminoplasty studies.10,11 Now, we need to develop an extended indication that can be safely applied laminoplasty to more patients, rather than simply limiting mild kyphotic alignment as a contraindication. Dr Nagoshi and colleagues1 well explained the tendency of mild kyphosis patients to change to a lordotic curve after laminoplasty and relatively good clinical results. These results may provide more options for the treatment of elderly osteoporotic and mild kyphosis patients. Lastly, as in the author’s conclusion, I fully agree with the phrase “laminoplasty is not all possible in mild kyphotic alignment patients.” We still need to pay attention to the severe postoperative kyphotic alignment that occurs after laminoplasty and make efforts to find an appropriate indication.
CONFLICT OF INTEREST

The author has nothing to disclose.

REFERENCES

Five-Repetition Sit-to-Stand Test Performance in Healthy Individuals: Reference Values and Predictors From 2 Prospective Cohorts

Anita M. Klukowska1,2,3, Victor E. Staartjes1,3,4, W. Peter Vandertop1, Marc L. Schröder1

1Department of Neurosurgery, Bergman Clinics, Amsterdam, The Netherlands
2Queen’s Medical Center, University of Nottingham, Nottingham, UK
3Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery, Amsterdam Movement Sciences, Amsterdam, The Netherlands
4Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland

Objective: The 5-repetition-sit-to-stand (5R-STS) test is an objective test of functional impairment commonly used in various diseases, including lumbar degenerative disc diseases. It is used to measure the severity of disease and to monitor recovery. We aimed to evaluate reference values for the test, as well as factors predicting 5R-STS performance in healthy adults.

Methods: Healthy adults (> 18 years of age) were recruited, and their 5R-STS time was measured. Their age, sex, weight, height, body mass index (BMI), smoking status, education level, work situation and EuroQOL-5D Healthy & Anxiety category were recorded. Linear regression analysis was employed to identify predictors of 5R-STS performance.

Results: We included 172 individuals with mean age of 39.4 ± 14.1 years and mean BMI of 24.0 ± 4.0 kg/m². Females constituted 57%. Average 5R-STS time was 6.21 ± 1.92 seconds, with an upper limit of normal of 12.39 seconds. In a multivariable model, age (regression coefficient [RC], 0.07; 95% confidence interval [CI], 0.05/0.09; p < 0.001), male sex (RC, -0.87; 95% CI, -1.50 to -0.23; p = 0.008), BMI (RC, 0.40; 95% CI, 0.10–0.71; p = 0.010), height (RC, 0.13; 95% CI, 0.04–0.22; p = 0.006), and houseworker status (RC, -1.62; 95% CI, -2.93 to -0.32; p = 0.016) were significantly associated with 5R-STS time. Anxiety and depression did not influence performance significantly (RC, 0.82; 95% CI, -0.14 to 1.77; p = 0.097).

Conclusion: The presented reference values can be applied as normative data for 5R-STS in healthy adults, and are necessary to judge what constitutes abnormal performance. We identified several significant factors associated with 5R-STS performance that may be used to calculate individualized expected test times.

Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT03303300 and NCT03321357

Keywords: Sit-to-stand, Objective test, Degenerative disc disease, Lumbar stenosis, Lumbar disc herniation, Functional impairment

INTRODUCTION

The sit-to-stand (STS) action is very common and performed by individuals of all ages up to 60 times a day or more. This movement is an important determinant of physical function and independence. In 1985, Csuka and McCarty were among the first to introduce the 5-repetition-sit-to-stand test (5R-STS) as a way of measuring lower leg strength. It involves measuring how quickly an individual will repeat the sitting-to-standing action 5 times. Since then, it has been applied to patients with...
a range of medical conditions, including lumbar degenerative spine disease, stroke, chronic obstructive pulmonary disease (COPD), Parkinson disease, rheumatoid arthritis, postkidney transplant, and posttotal knee replacement to not only objectively assess functional impairment, but also to monitor recovery and progress. It is also used in the pediatric setting. Objective functional tests can eliminate subjectivity that is at times captured in questionnaires, and account for symptoms such as foot drop missed by common Patient-Reported Outcome Measures. The popularity of tests for objective functional impairment (OFI) has increased rapidly during the past years. Other OFI tests include the Timed Up and Go (TUG) test and the 6-minute walk test (6MWT).

To assess what should be considered as a pathological performance in any test for OFI, normative reference values from a healthy population need to be established. Only few data are available on normative values for the 5R-STS in healthy individuals, only focusing on elderly individuals. In addition, it is important to understand which factors govern test performance. For example, if body height significantly influences test performance because of a standardized chair height that may benefit shorter individuals, this effect needs to be considered. In addition, knowledge of these predictive factors allows generation of individualized expected test statistics for patients with e.g., degenerative disease of the lumbar spine. Lower extremity muscle strength and sense of balance are the mostly commonly studied predictive factors, although only few studies analyzed variables such as age, sex, or height as determinants of the 5R-STS test time.

Additionally, the majority of 5R-STS studies concentrate on patients with specific diseases or elderly patients, creating a gap in understanding the younger adult population. In addition, sociodemographic factors such as work status, education level, and anxiety and depression are frequently not considered. We aimed to evaluate reference values for the test, as well as factors predicting 5R-STS performance in healthy adults.

MATERIALS AND METHODS

1. **Study Design**

In 2 prospective studies, carried out between October and December of 2017 and between December 2017 and June 2018, healthy volunteers were seen at a Dutch specialized short-stay outpatient spine surgery clinic. The prospective studies (ClinicalTrials.gov Identifier: NCT03030300 and NCT0321357) were approved by the local Institutional Review Board (Medical Research Ethics Committees United, Registration Number: W17.107 and W17.134) and were conducted according to the Declaration of Helsinki. Informed consent was obtained from all participants.

2. **Study Population**

Healthy individuals aged > 18 years were recruited and were either volunteers or employees of the department. Most volunteers were partners of patients scheduled for surgery, and thus demonstrated comparable sociodemographic features. Some volunteers were also acquaintances and relatives of authors. Participants disclosing spinal conditions, hip- or knee replacements, other lower extremity-related complaints, or that required walking aides were excluded.

3. **Testing Protocol**

The 5R-STS test was performed as previously described. Participants were asked to sit down on an armless chair of standard height (48 cm) with a hard seat, firmly placed against a wall. The participants were instructed to fold their arms across their chest, and to keep their feet flat on the ground. Participants were required to wear stable shoes for this test. To become familiar with the maneuver, participants were asked to stand up fully and sit back down again once without using their upper limbs. If assistance was required, or if the maneuver could not be completed, the test was abandoned. Otherwise, the patients were asked to stand up fully and sit down again, landing on the seat firmly, 5 times as fast as possible, starting on the command “go.” Using a stopwatch, the 5 repetitions were timed from the initial command to the completed fifth stand. This time was recorded as the participant’s score. If the patient was unable to perform the test in 30 seconds, or not at all, this was captured, and the test score was recorded as 30 seconds. Volunteers and patients were also asked to complete questionnaires containing baseline sociodemographic data: age, sex, body mass index (BMI), height, weight, smoking status, education level, work situation, and EuroQOL-5D (EQ-5D) questionnaire – containing the EQ-Anxiety and Depression category, which has been demonstrated to correlate adequately with anxiety and depression. Participants filled in the questionnaires right after initially performing the test.

4. **Statistical Analysis**

Continuous variables are reported as mean ± standard deviation, and categorical variables as numbers and percentages. The 2 cohorts were pooled. The upper limit of normal (ULN) was arrived at by calculating the 99th percentile of this normative
population.38 Missing data, which was presumed to be missing at random, was imputed using 5-nearest neighbor imputation.29 To identify univariable predictors of 5R-STS performance in healthy individuals, linear regression models were fitted for each of the baseline variables. Subsequently, a multivariable linear regression model was fitted to identify factors independently associated with 5R-STS performance. The primary analysis was based on the purposeful variable selection procedure described by Bursac et al.30 In more detail, variables were considered for primary inclusion at univariable p ≤ 0.25. Subsequently, an initial multivariable model was built, and variables that did not have a significant effect (defined as p ≤ 0.1) or that did not demonstrate confounding (defined using a change-in-estimate criterion of 20% or greater) were iteratively removed from the model. Finally, any variable not eligible for the initial multivariable model was added iteratively, and the model was subsequently reduced in the same way as described above by iterative removal of only those variables that were additionally added.29 Spearman rank correlation was applied to describe the correlation among continuous variables and 5R-STS performance. All analyses were carried out using R version 3.6.2 (The R Foundation for Statistical Computing, Vienna Austria).31 A 2-tailed p ≤ 0.05 was considered significant. The statistical code is provided (Supplementary Content 1).

RESULTS

1. Cohort

The cohort consisted of 172 healthy adult participants (Table 1) with a mean age of 39.4 ± 14.1 years. The ratio of females to males was 57:43. A mean BMI of 24.0 ± 4.0 kg/m2 was observed. Only 13.4% were active smokers. In terms of work situation, 35.5% of participants were students, 39.5% of participants were employed, and 13% were retired, among others. A vast majority (94.2%) of the cohort scored 1 in EQ-5D Anxiety & Depression, indicating no signs of anxiety or depression, while the rest scored at 2 indicating mild anxiety or depression.27 Fifteen individuals (8.7%) had missing data on anxiety and depression.

2. Reference Values

A detailed account of normative reference values for healthy adults is provided in Table 2, including stratifications for male and female individuals.

Table 1. Basic demographic data for healthy adult participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All participants (n = 172)</th>
<th>Female (n = 98)</th>
<th>Male (n = 74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>39.4 ± 14.1</td>
<td>63.3 ± 18.5</td>
<td>41.7 ± 19.5</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>98 (57.0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Male</td>
<td>74 (43.0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>24.0 ± 4.0</td>
<td>23.3 ± 4.5</td>
<td>25.0 ± 3.0</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171.0 ± 10.0</td>
<td>164.9 ± 6.6</td>
<td>179.2 ± 7.7</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>70.5 ± 14.1</td>
<td>63.3 ± 11.7</td>
<td>80.0 ± 11.1</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active smoker</td>
<td>23 (13.4)</td>
<td>10 (10.2)</td>
<td>13 (17.6)</td>
</tr>
<tr>
<td>Ceased smoking</td>
<td>37 (21.5)</td>
<td>19 (19.4)</td>
<td>18 (24.3)</td>
</tr>
<tr>
<td>Never smoked</td>
<td>112 (65.1)</td>
<td>69 (70.4)</td>
<td>43 (58.1)</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary</td>
<td>6 (3.4)</td>
<td>2 (20.0)</td>
<td>4 (50.4)</td>
</tr>
<tr>
<td>High-school</td>
<td>59 (34.3)</td>
<td>34 (34.7)</td>
<td>25 (33.8)</td>
</tr>
<tr>
<td>Higher</td>
<td>103 (60.0)</td>
<td>59 (60.2)</td>
<td>44 (59.5)</td>
</tr>
<tr>
<td>Postdoctoral</td>
<td>4 (2.3)</td>
<td>3 (30.1)</td>
<td>1 (1.3)</td>
</tr>
<tr>
<td>Work situation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>68 (39.5)</td>
<td>37 (37.8)</td>
<td>31 (41.9)</td>
</tr>
<tr>
<td>Self-employed</td>
<td>13 (7.6)</td>
<td>3 (3.1)</td>
<td>10 (13.5)</td>
</tr>
<tr>
<td>Retired</td>
<td>22 (12.8)</td>
<td>11 (11.2)</td>
<td>11 (14.9)</td>
</tr>
<tr>
<td>Houseworker</td>
<td>5 (2.9)</td>
<td>5 (5.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>3 (1.7)</td>
<td>1 (1.0)</td>
<td>2 (2.7)</td>
</tr>
<tr>
<td>Student</td>
<td>61 (35.5)</td>
<td>41 (41.8)</td>
<td>20 (27.0)</td>
</tr>
<tr>
<td>EQ5D Anxiety & Depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>162 (94.2)</td>
<td>90 (91.8)</td>
<td>72 (97.3)</td>
</tr>
<tr>
<td>2</td>
<td>10 (5.8)</td>
<td>8 (8.2)</td>
<td>2 (2.7)</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation and number (%). BMI, body mass index.

Table 2. Reference values for the 5R-STS test time (second) in healthy individuals

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Male</th>
<th>Female</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>ULN</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>≤ 60</td>
<td>5.98 ± 1.54</td>
<td>8.7</td>
<td>5.60 ± 1.43</td>
</tr>
<tr>
<td>> 60</td>
<td>8.23 ± 2.26</td>
<td>11.85</td>
<td>9.00 ± 1.98</td>
</tr>
<tr>
<td>Overall</td>
<td>6.38 ± 1.88</td>
<td>11.10</td>
<td>6.09 ± 1.95</td>
</tr>
</tbody>
</table>

Mean ± standard deviation (SD) and ULN (upper limits of normal) are provided for each subpopulation. 5R-STS, 5-repetition sit-to-stand test.
and female individuals, for those aged under and over 60 years, as well as for combinations of these factors. In the overall population, the average 5R-STS test time was 6.21 ± 1.92 seconds, with an ULN of 12.39 seconds.

We have additionally provided normative reference values for healthy adults further stratified by age groups ≤ 60 years of age (Supplementary Table 1).

3. Factors Associated With 5R-STS Performance

Results of the univariable analysis are demonstrated in Table 3. In the multivariable model (Table 4) including confounders, higher age (regression coefficient [RC], 0.07; 95% confidence interval [CI], 0.05/0.09; \(p < 0.001\)) (Fig. 1), higher BMI (RC, 0.40; 95% CI, 0.10–0.71; \(p = 0.010\)), and greater height (RC, 0.13; 95% CI, 0.04–0.22; \(p = 0.006\)) were significantly associated with a higher 5R-STS test time, and thus with worse performance. In contrast, male sex (RC, -0.87; 95% CI, -1.50 to -0.23; \(p = 0.008\)) (Fig. 2) and houseworker status (RC, -1.62; 95% CI, -2.93 to -0.32; \(p = 0.016\)) were associated with lower 5R-STS test time, and thus with greater performance. Body weight and education level were included in the model as confounding variables – as was anxiety and depression, which did not influence 5R-STS performance significantly (RC, 0.82; 95% CI, -0.14 to 1.77; \(p = 0.097\)). The post hoc power analysis demonstrated a power of 1-\(\beta\) approaching 1.

Table 3. Univariable linear regression analysis of predictive factors for the 5R-STS in healthy adult individuals

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate analysis</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RC</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>0.06</td>
<td>0.05 to 0.08</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.29</td>
<td>-0.29 to 0.87</td>
</tr>
<tr>
<td>Female</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>0.21</td>
<td>0.14 to 0.27</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>0.02</td>
<td>-0.01 to 0.04</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.05</td>
<td>0.03–0.07</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active smoker</td>
<td>-0.20</td>
<td>-1.06 to 0.67</td>
</tr>
<tr>
<td>Ceased smoking</td>
<td>0.07</td>
<td>-0.64 to 0.79</td>
</tr>
<tr>
<td>Never smoked</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary</td>
<td>3.03</td>
<td>-8.08 to 2.86</td>
</tr>
<tr>
<td>High-school</td>
<td>-0.37</td>
<td>-0.58 to 2.94</td>
</tr>
<tr>
<td>Higher</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Postdoctoral</td>
<td>0.56</td>
<td>-4.49 to 4.13</td>
</tr>
<tr>
<td>Work situation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Self-employed</td>
<td>0.72</td>
<td>-0.28 to 1.72</td>
</tr>
<tr>
<td>Retired</td>
<td>2.30</td>
<td>1.49–3.10</td>
</tr>
<tr>
<td>Houseworker</td>
<td>-0.15</td>
<td>-1.68 to 1.37</td>
</tr>
<tr>
<td>Unemployed</td>
<td>-0.17</td>
<td>-2.11 to 1.77</td>
</tr>
<tr>
<td>Student</td>
<td>-0.81</td>
<td>-1.39 to -0.23</td>
</tr>
<tr>
<td>EQ-5D Anxiety &Depression 1</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>EQ-5D Anxiety &Depression 2</td>
<td>2.04</td>
<td>0.85–3.23</td>
</tr>
</tbody>
</table>

Table 4. Multivariable linear regression analysis of predictive factors for the 5R-STS in healthy adult individuals

<table>
<thead>
<tr>
<th>Variable</th>
<th>Multivariate analysis</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RC</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>0.07</td>
<td>0.05–0.09</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>-0.87</td>
<td>-1.50 to -0.23</td>
</tr>
<tr>
<td>Female</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>0.40</td>
<td>0.10–0.71</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>0.13</td>
<td>0.04–0.22</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>-0.10</td>
<td>-0.21 to 0.01</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary</td>
<td>1.07</td>
<td>-0.12 to 2.26</td>
</tr>
<tr>
<td>High-school</td>
<td>-0.02</td>
<td>-0.48 to 0.43</td>
</tr>
<tr>
<td>Higher</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Postdoctoral</td>
<td>-0.03</td>
<td>-1.39 to 1.34</td>
</tr>
<tr>
<td>Work situation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Self-employed</td>
<td>0.02</td>
<td>-0.83 to 0.87</td>
</tr>
<tr>
<td>Retired</td>
<td>-0.17</td>
<td>-1.15 to 0.80</td>
</tr>
<tr>
<td>Houseworker</td>
<td>-1.62</td>
<td>-2.93 to -0.32</td>
</tr>
<tr>
<td>Unemployed</td>
<td>-0.21</td>
<td>-1.83 to 1.41</td>
</tr>
<tr>
<td>Student</td>
<td>0.71</td>
<td>0.11–1.31</td>
</tr>
<tr>
<td>EQ-5D Anxiety &Depression 1</td>
<td>1 Reference</td>
<td></td>
</tr>
<tr>
<td>EQ-5D Anxiety &Depression 2</td>
<td>2</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Variables for inclusion in this final model were selected according to the purposeful variable selection algorithm.

5R-STS, 5-repetition sit-to-stand test; RC, regression coefficient; CI, confidence interval; BMI, body mass index; EQ-5D, EuroQOL-5D.
DISCUSSION

The purpose of this study was to describe reference values and to identify predictive factors of 5R-STS test time in healthy individuals. It was found that age, BMI, and body height correlated positively with 5R-STS test time, while male sex and houseworker status correlated negatively with test times. Anxiety and depression, body weight, and education level were identified as confounders of 5R-STS performance and were thus included in the multivariable model, however without a significant influence on performance.

Establishing normative data in the form of reference values—derived from healthy "normal" population—is crucial for 2 reasons: First, it allows judgement of what is normal and what is abnormal. Commonly, the ULN is calculated to base this decision on. Our reference values (Table 2) allow application of the 5R-STS in most pathological populations, as the age- and sex-stratified ULNs can determine what is objectively normal and what is pathological performance. The degree to which abnormal 5R-STS performance correlates with disease progression (construct validity) for particular diseases such as COPD or lumbar degenerative disease can however only be judged after validation in those specific populations. Second, these data allow generation of models that can calculate expected 5R-STS test times for each individual, even if their performance is pathological—Much akin to spirometry reporting in pulmonary functional testing or t-scores for bone density in osteoporosis. This can both help to quantify the degree of abnormality, as well as enable setting targets, for example when it comes to recovery of functional status after lumbar spine surgery or pro-

Fig. 1. Scatter plots with marginal histograms demonstrating continuous factors associated with 5-repetition sit-to-stand test (5R-STS) test time in healthy adult individuals using Spearman rank correlation. BMI, body mass index.
The Five-Repetition Sit-to-Stand Test (5R-STS)

Klukowska AM, et al.

Fig. 2. Boxplots of categorical factors associated with 5-repetition sit-to-stand test (5R-STS) test time in healthy adult individuals.

The statistical analysis of factors associated with 5R-STS performance was performed using the purposeful variable selection algorithm, which substantiates that variables included in the final model significantly influence the 5R-STS test time either by statistical significance of a low p-value or by providing adjustment for other variables, known as confounding. This method is often deemed superior to forward and backward stepwise selection models, or those based on simple univariate filtering, as it reduces the risk of missing meaningful variables that failed to have a p-value of < 0.05—or any other threshold for that matter—initially. Many question the validity of the commonly used p-value cutoff of < 0.05, often suggesting that it is an arbitrary threshold creating a fallacious reassurance of significance. Through the use of this approach in this study, all relevant variables that were collected are ascertained to be included in the multivariable model, without missing out on important confounders.

The identified age-associated increase in 5R-STS test time is multifactorial and is in agreement with available literature. Firstly, older individuals experience progressive loss of skeletal muscle mass and power. Multiple studies confirmed that the quadriceps strength is one of the most important determinants of the test performance. On the other hand, some data suggested that sense of balance is as crucial while other found no significant association between the 5R-STS test and the Berg Balance Scale. Nonetheless, all of the aforementioned components including sensorimotor and cognitive status decline with age may contribute not only to increased 5R-STS test time, but also to poorer performance across other OFI tests such as 6MWT. Therefore, it is highly recommended to include age in any proposed baseline severity stratification, or in algorithms predicting individual expected 5R-STS test time.

We found that higher BMI was associated with longer 5R-STS test times. Albeit this is contrary to what Lord et al. reported in their study in an elderly population—the mean age of their participants was 80 years—that difference in results may be rationalised by increased weight in younger individuals reflecting muscle mass. Currently, there is no consensus on the independent impact of height on OFI test's, such as the 5R-STS test.
Performance related to height appears dependent also on standardized seat height—in our population, a standardized seat with 48-cm height was used, corresponding to a normal seat height in continental Europe. As decreased chair height increases test time, some testing protocols strongly recommended to seat an individual at their knee height to optimize the test.45,46

In our study, level of education did not significantly influence test performance, although it was included as a confounding variable, with elementary-level education leading to marginally longer test times. It has been previously demonstrated that less educated individuals were at greater risk of decreasing their physical activity.47 This finding was suggested to be linked to perceived control, where participants with lower education had lower self-esteem and less confidence in achieving a desired outcome, as well as being more likely to face challenges of multiple-child families and financial struggles.43,47

There is a bidirectional relationship between mood and functional mobility.48 Multiple sources have found that increased physical activity positively affects people’s mental health, while other studies demonstrated presence of depressive symptoms as a strong predictor of decreased mobility and indirectly functional impairment.46-52 In this study, the EQ-5D was utilized—a validated tool for depression and anxiety symptoms assessment that is commonly used to assess patients’ psychological status.27,53 In patients with degenerative disease of the lumbar spine, a stepwise increase in OFI measured by the TUG test demonstrated a drop in EQ-5D by -0.073.54 A similar relationship was identified between the 6MWT and psychological status.19,55,56 While the influence of depression and anxiety on the 5R-STS performance in our study was minimal in the multivariable model—suggesting that the 5R-STS test is relatively robust towards mood factors, in contrast to many subjective questionnaires—the univariable analysis demonstrated a weak influence of depression and anxiety on 5R-STS test performance. However, this statistically significant influence disappeared after inclusion in a multivariable model.

In contrast to results of Bohannon et al.17 and Lord et al.19 in elderly patients, findings of this study—at least in the multivariable model—demonstrated a strong relationship between male sex and lower 5R-STS test times. Interestingly, studies on the 6 MWT did not identify gender differences.44,57 The gender difference identified in our study may be partially explained through the 5R-STS’s more prominent focus on rapid lower limb muscle torque and knee extension strength, which undergoes more accelerated age-related decline in women compared to men.58,59

Intriguingly, the smoking status was not a significant predictive factor for the 5R-STS test time in healthy individuals. A cross-sectional study by Heydari et al.60 demonstrated that smokers were 4.88 more likely to experience decreased physical function compared to nonsmokers. However, they did not differentiate between ‘never smokers’ and ‘ex-smokers,’ as we did—an important distinction as irreversible airway gene expression changes persist years after smoking cessation.61 The relatively quick performance of the 5R-STS test may not be sufficient to elicit decreased physical function as a result of smoking, although it has been effectively used in COPD.4 Additionally, it is crucial to highlight that this study’s cohort comprised of healthy individuals only without mobility issues. Smoking is said to affect physical function as result of developing severe chronic conditions which were not applicable for this cohort.62

First, some categories were low in sample size. Only 3.4% of the cohort had elementary-level education, while around 63% had a higher or postdoctoral education. This statistical power may have influenced the effect size. This also applies to work situation and anxiety and depression—future studies should include a higher number of patients with anxious and depressive symptoms to more accurately study the robustness of the 5R-STS in this population. In addition, the presence of chronic conditions in volunteers was not clearly reported, which may have influenced their 5R-STS performance. However, our criteria for inclusion led to an exclusion of individuals with comorbidities typically influencing 5R-STS performance markedly. Also, we were limited in our analysis to the variables collected within the 2 prospective cohorts—any other variables such as presence of regular exercise or polypharmacy could thus not be considered. We did not include any individuals aged under 18, although the test could potentially also be used in adolescents. Finally, our data may only generalize to a Dutch population. As has been observed for other measurements, such as the EQ-5D or the 6MWT, different populations may require different normative values. Further studies should aim to distinguish between different nationalities and ethnicities.63,64

CONCLUSION

The presented reference values can be applied as normative data for the 5R-STS in healthy adult individuals of all age groups, and are necessary to judge what constitutes abnormal performance. We identified several factors associated with 5R-STS performance that must be taken into account and that may be applied to calculate individualized expected test times. Notably,
the 5R-STS does not appear to be significantly influenced by anxiety and depression.

CONFLICT OF INTEREST

The authors have nothing to disclose.

ACKNOWLEDGMENTS

The authors are grateful to all participating volunteers, and to Femke Beusekamp, BSc and Nathalie Schouman for study coordination and data collection. We also thank Marlies P. de Wispelaere, MSc for her efforts in clinical informatics.

SUPPLEMENTARY MATERIALS

Supplementary Content 1 and Table 1 can be found via https://doi.org/10.14245/ns.2142750.375.

REFERENCES

The Five-Repetition Sit-to-Stand Test (5R-STS)

Klukowska AM, et al.

The Five-Repetition Sit-to-Stand Test (5R-STS)

Klukowska AM, et al.

The Five-Repetition Sit-to-Stand Test (5R-STS)
Klukowska AM, et al.

https://doi.org/10.14245/ns.2142750.375

www.e-neurospine.org 769

Supplementary Content 1. Statistical code. R Code for the statistical analysis figure rendering. The code was executed in R Version 3.5.2 (The R Foundation for Statistical Computing, Vienna, Austria) on a machine running macOS Catalina Version 10.15.6. The raw data will be made available by the authors on request.
Supplementary Table 1. Reference values for the 5R-STS test time (second) in healthy individuals ≤ 60 years of age

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Male Mean ± SD</th>
<th>Male ULN</th>
<th>Female Mean ± SD</th>
<th>Female ULN</th>
<th>Overall Mean ± SD</th>
<th>Overall ULN</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30 yr</td>
<td>5.24 ± 1.36</td>
<td>8.15</td>
<td>5.18 ± 1.08</td>
<td>7.59</td>
<td>5.20 ± 1.18</td>
<td>8.13</td>
</tr>
<tr>
<td>31-40 yr</td>
<td>5.89 ± 1.10</td>
<td>7.49</td>
<td>5.60 ± 1.68</td>
<td>9.01</td>
<td>5.73 ± 1.47</td>
<td>9.0</td>
</tr>
<tr>
<td>41-50 yr</td>
<td>7.01 ± 1.88</td>
<td>8.49</td>
<td>5.91 ± 1.19</td>
<td>7.66</td>
<td>6.46 ± 1.25</td>
<td>8.48</td>
</tr>
<tr>
<td>51-60 yr</td>
<td>7.02 ± 1.44</td>
<td>8.91</td>
<td>6.64 ± 1.82</td>
<td>8.83</td>
<td>6.83 ± 1.63</td>
<td>8.95</td>
</tr>
</tbody>
</table>

Mean ± standard deviation (SD) and ULN (upper limits of normal) are provided for each subpopulation.

5R-STS, 5-repetition sit-to-stand test.
INTRODUCTION

Vertebral artery (VA) injury is one of the most serious complications during cervical spine surgeries, which may result in problems such as cerebral vascular disturbance, neurological deficit, and even death.¹,² When atlantoaxial dislocation (AAD) is combined with atlas occipitalization and C2–3 fusion, we consider it as a special subgroup of AAD cases with prominent clinical features including younger onset age, increased probability of concomitant Chiari deformity, syringomyelia and cranial neuropathy, and a lower rate of myelopathy improvement compared with typical AAD patients, which have been reported as "sandwich" AAD.² The 3 deformities included in "sandwich" AAD were classified into 3 parts: the upper fusion region (C1 occipitalization), the sandwiched region (AAD), and the lower fusion region (C2–3 fusion) (Fig. 1). Neurologic deterio-
Variations of Sandwich AAD

Tian Y, et al.

https://doi.org/10.14245/ns.2142726.363

www.e-neurospine.org

771

ration in such patients commonly presents in the third or fourth decade of life, which requires surgical treatment. However, such osseous deformities as atlas occipitalization and C2–3 fusion are often accompanied by severe VA variations. To understand VA malformations are particularly important in the treatment of sandwich AAD patients.

A normal VA is divided into 4 segments: V1 segment (it originates from the subclavical artery and enters the C6 transverse process), V2 segment (walks through C6–2 transverse process), V3 segment (the segment courses from C2 to the foramen magnum), and V4 segment is coursing from entering the cranium to attending the basilar artery. Wang et al. has previously reported anatomical V3 segment variations of VA in patients with atlas occipitalization. The bone deformity of "sandwich" AAD patients was more serious than mere atlas occipitalization, and the combined VA deformities may be more complex, which have not been reported yet. In this current group, due to the existence of 3 deformities ranging from occipital bone to C3, we would like to focus on summarizing VA variations of segment from C3 level to the foramen magnum, to help the planning for surgical strategies.

Here, we summarized the VA pattern of 96 sandwich AAD patients to describe their variations and to set up strategies of how to reduce the injury of VA during surgery.

MATERIALS AND METHODS

This study was a retrospective study and no formal ethics approval was required as ruled by the ethics committee of Peking University Third Hospital. From 2009 to 2020, we retrospectively reviewed 3-dimensional computed tomography angiography (3D-CTA) data of 96 AAD patients combined with atlas occipitalization and C2–3 fusion at our institution, which were diagnosed as "sandwich" AAD. Based on the dynamic radiographs (flexion and extension) and computed tomography (CT) scan evidence, the diagnosis of AAD was defined as an abnormal local relationship between the atlas and axis, with an atlantodental interval > 3 mm in adults and > 5 mm in children (< 18 years of age). Patients were excluded if adequate radiographs were unavailable or they did not undergo surgical treatment. All of the patients' 3D-CTA data were evaluated to identify the VA variations from C3 level to the foramen magnum before surgery. The average age of the patients was 39.6 years (range, 5–67 years), with 45 males and 51 females. Nonionic contrast material was intravenously administered to all patients via the antecubital vein. Then 3D-CTA were performed on all 96 cases, using a 64-slice scanner (lightspeed VCT, GE Healthcare Systems, Chicago, IL, USA) with the scanning parameters: 120 kV, 500 mA, 0.6 seconds/rotation, table speed with 0.516 mm/rotation and 0.625 mm slice thickness. Three-dimensional images were obtained and analyzed by 2 spine surgeons.

According to the characteristics of the 3-part pathological structures in "sandwich" subgroup, we described the variations of each VA in 3 different parts. In the upper fusion region, the classification of VA variation was based on the position of VA entering the cranial or spinal canal and the relationship with atlas; in the sandwiched region, the VA variations were described according to the morphology of VA in this region; in the lower fusion region—the VA variations were classified for the shape of VA in the transverse foramen of C2 and C3 and its relationship with adjacent bone. Besides, the diameter of bilateral VA in each patient was measured at C2 level, then a dominant VA was defined if it was at least 30% larger than the other side.

Then, we also retrospectively reviewed 3D-CTA data of 96 patients as control group patients who were without atlas occipitalization, C2–3 fusion, and any other cervical bone deformity at our institution at the same time (from 2009 to 2020). The average age of the patients was 42.3 years (range, 11–69 years), with 47 males and 49 females. And there was no statistical difference in the age and sex distribution between the 2 patient groups using chi-square test (p > 0.05). Their 3D-CTA data were evaluated to identify the VA variations following the 3-part classification method. Chi-square test was also performed for statistical analyses using IBM SPSS Statistics ver. 23.0 (IBM Co., Armonk, NY, USA) to compare the difference of the rate of VA deformity between these 2 different groups of patients.

Fig. 1. Illustration of the 3 parts of vertebral artery (VA) in the "sandwich" atlantoaxial dislocation.
RESULTS

1. The VA Variations in Sandwich AAD Patients

In our study, 192 sides of VAs were analyzed. The VA variations of sandwich AAD patients in 3 regions were summarized separately and presented in Table 1.

1) The upper fusion region: (U-region)

Type I: The VA passes through the transverse foramen of the C1 and enters an extraossseous canal created in the assimilated atlas before reaching the cranium (101 sides, 52.6%) (Fig. 2A, a); Type II: The VA enters the spinal canal directly under the posterior arch of atlas without passing through the transverse foramen of C1 (69 sides, 35.9%) (Fig. 2B, b; red arrow); Type III: The VA passes through the transverse foramen of the C1 and is exposed partly when passing through the VA sulcus due to incomplete occipitalization of the C1 posterior arch (17 sides, 8.9%) (Fig. 2C, c); Type IV: Absent VA (5 sides, 2.6%) (Fig. 2B; yellow arrow).

2) The sandwiched region: (S-region)

Type I: The VA goes through the C2 transverse foramen and ascends directly into the C1 transverse foramen without tortuosity (113 sides, 58.9%) (Fig. 3A, a); Type II: The VA courses above the axis facet or makes a curve below the atlas lateral mass and then turns directly medially towards the spinal canal after leaving the C2 transverse foramen without going through the C1 transverse foramen (first intersegmental artery [FIA]) (66 sides, 34.4%) (Fig. 3B, b); Type III: The VA is duplicated after emerging from the C2 transverse foramen; one branch passes

<table>
<thead>
<tr>
<th>Region</th>
<th>Variations</th>
<th>Number</th>
<th>Proportion</th>
<th>Surgical strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper fusion region</td>
<td>I: The VA passes through the C1 foramen and enters an extraossseous canal</td>
<td>101</td>
<td>52.6%</td>
<td>Evaluating the shape of VA in osseous foramen and the location of the osseous foramen</td>
</tr>
<tr>
<td></td>
<td>created in the assimilated atlas before reaching the cranium.</td>
<td></td>
<td></td>
<td>preoperatively</td>
</tr>
<tr>
<td></td>
<td>II: The VA enters the spinal canal directly under the C1 posterior arch</td>
<td>69</td>
<td>35.9%</td>
<td>Small risk of injury with C1LMS in this region</td>
</tr>
<tr>
<td></td>
<td>without passing through the C1 transverse foramen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III: The VA is exposed partly when passing through the vertebral artery</td>
<td>17</td>
<td>8.9%</td>
<td>Taking special care during the exposure of the posterior arch of C1</td>
</tr>
<tr>
<td></td>
<td>sulcus due to incomplete occipitalization of the C1 posterior arch.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV: Absent VA</td>
<td>5</td>
<td>2.6%</td>
<td>Avoiding injuring the contralateral side VA</td>
</tr>
<tr>
<td>Sandwiched region</td>
<td>I: The VA goes through the C2 transverse foramen and ascends directly</td>
<td>113</td>
<td>58.9%</td>
<td>Small risk of injury in this region</td>
</tr>
<tr>
<td></td>
<td>into the C1 transverse foramen without tortuosity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II: The VA courses above the axis facet or makes a curve below the atlas</td>
<td>66</td>
<td>34.4%</td>
<td>Preoperative evaluation and caution during the lateral mass joint operation</td>
</tr>
<tr>
<td></td>
<td>lateral mass and then turns directly medially towards the spinal canal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III: The VA is duplicated after emerging from the C2 transverse foramen.</td>
<td>6</td>
<td>3.1%</td>
<td>Preoperative evaluation and caution during the lateral mass joint operation</td>
</tr>
<tr>
<td></td>
<td>IV: Absent VA</td>
<td>5</td>
<td>2.6%</td>
<td>Avoiding injuring the contralateral side VA</td>
</tr>
<tr>
<td></td>
<td>V: The posterior inferior cerebellar artery originates from the level</td>
<td>2</td>
<td>1.0%</td>
<td>Preoperative evaluation and caution during the lateral mass joint operation</td>
</tr>
<tr>
<td></td>
<td>C1/2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower fusion region</td>
<td>I: The VA travels normally in the C2/3 transverse foramen.</td>
<td>138</td>
<td>71.9%</td>
<td>Small risk of injury in this region</td>
</tr>
<tr>
<td></td>
<td>II: Tortuosity or medial loop formation can be seen in the C2 or C3</td>
<td>21</td>
<td>10.9%</td>
<td>Evaluating the location of the loop and its subsequent bone deformity</td>
</tr>
<tr>
<td></td>
<td>transverse foramen (loop).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III: The VA is anomalously located too medially, too posteriorly, and/or</td>
<td>20</td>
<td>10.4%</td>
<td>Using alternative fixation methods instead of C2 pedicle</td>
</tr>
<tr>
<td></td>
<td>too high with a C2 isthmus height of ≤ 5 mm (HRVA).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV: Loop and HRVA are concurrent at the same time.</td>
<td>7</td>
<td>3.6%</td>
<td>Alternative fixation methods and evaluation of the loop location</td>
</tr>
<tr>
<td></td>
<td>V: Absent VA</td>
<td>5</td>
<td>2.6%</td>
<td>Avoiding injuring the contralateral side VA</td>
</tr>
<tr>
<td></td>
<td>VI: The VA emerges from the C3 transverse foramen and ascends directly</td>
<td>1</td>
<td>0.5%</td>
<td>Careful operation during the exposure of C2 pedicle</td>
</tr>
<tr>
<td></td>
<td>without passing through C2 transverse foramen.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VA, vertebral artery; AAD, atlantoaxial dislocation; C1LMS, C1 lateral mass screw; HRVA, high-riding VA.
Fig. 2. Vertebral artery (VA) variations in U-region. (A, a) Type I of passing through an extrasseous canal created by the assimilated atlas (red arrow). (B, b) The red arrow shows the type II of entering the spinal canal directly under the C1 posterior arch; The yellow arrow shows the absent VA. (C, c) Type III of exposed partly by the incomplete occipitalization of the C1 posterior arch (red arrow).

Fig. 3. Vertebral artery (VA) variations in S-region. (A, a) Type I in this region of going through the C2 and C1 transverse foramen without tortuosity. (B, b) Type II of coursing above the axis facet or making a curve below the atlas lateral mass illustrated by the red arrow. (C, c) Type III of duplicated VA. (D, d) A special subtype of type III of the 2 branches converge under the C1 posterior arch and then goes in spinal canal. (E, e) Type V of the posterior inferior cerebellar artery originating from the level C1/2. All the variations were marked by the red arrow.
through the C1 transverse foramen; the other branch enters the spinal canal between C1 and C2 before joining the former (fenestration of the VA above and below C1 [FEN]) (6 sides, 3.1%) (Fig. 3C, c). One special type of them is that the 2 branches converge under the C1 posterior arch and then goes in spinal canal (Fig. 3D, d); Type IV: Absent VA (5 sides, 2.6%); Type V: The posterior inferior cerebellar artery (PICA) originates from the level C1/2 (2 sides, 1.0%) (Fig. 3E, e).

3) The lower fusion region (L-region)
Type I: The VA travels normally in the C2 and C3 transverse foramen (138 sides, 71.9%) (Fig. 4A, a); Type II: Tortuosity or medial loop formation can be seen in the C2 or C3 transverse foramen (loop) (21 sides, 10.9%) (Fig. 4B, b); Type III: The VA is anomalously located too medially, too posteriorly, and/or too high with a C2 isthmus height of ≤ 5 mm (HRVA) (20 sides, 10.4%) (Fig. 4C, c); Type IV: Loop and HRVA are concurrent at the same time (7, 3.6%) (Fig. 4D, d); Type V: Absent VA (5 sides, 2.6%); Type VI: The VA emerges from the C3 transverse foramen and ascends directly without passing through C2 transverse foramen (1, 0.5%) (Fig. 4E, e).

Table 2. The rate of VA deformity between sandwich AAD patients and control group patients

<table>
<thead>
<tr>
<th>Region</th>
<th>Rate of VA deformity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandwich AAD (n = 192)</td>
<td>Control group (n = 192)</td>
</tr>
<tr>
<td>U-Region</td>
<td>38.5</td>
</tr>
<tr>
<td>S-Region</td>
<td>41.1</td>
</tr>
<tr>
<td>L-Region</td>
<td>28.1</td>
</tr>
</tbody>
</table>

VA, vertebral artery; AAD, atlantoaxial dislocation.

2. The Dominance of VA In Sandwich AAD patients
Forty-six cases of 96 patients had unilateral-side VA dominance, accounting for 48.0%. Twenty-three cases were left-side VA dominance (including 1 right-side absence), while 23 cases were right-side VA dominance (including 4 left-side absence).

3. The Difference of VA Deformity Between Sandwich AAD Patients and Control Group Patients
Following the 3-part classification method, 4 sides of VA were abnormal (3 sides of type II, 1 absent side of type IV) in U-region, 8 sides were abnormal (3 sides of type II, 3 sides of type III, 1 side of type IV and 1 side of type V) in S-region and 6
sides (3 sides of type II, 2 sides of type III and 1 side of type V) were abnormal in L-region in control group patients. The specific rate of VA deformity between sandwich AAD patients and control group patients was shown in Table 2. The rate of VA deformity in sandwich AAD patients was much higher than that in control group patients (p < 0.001). Besides, 48 cases of 96 patients had unilateral-side VA dominance (24 cases of left-side dominance, 24 cases of right-side dominance) in control group patients (50.0% vs 48.0%, p = 0.77, no statistically significant difference).

DISCUSSION

VA variations in different patients series have been reported. Wakao et al.11 reported 387 cases of VA variations at C1–2 level without osseous deformities in craniovertebral junction in 2014, including high-riding VA (HRVA, 10.1%), persistent FIA (1.8%), fenestration of the VA above and below C1 (FEN 1.3%), PICA from C1/2 (PICA, 1.3%) and the ponticulus posticus (6.2%). Wang et al.10 have reported the variations of V3 segment of VA in 36 patients with atlas occipitalization in 2009, which was divided into 4 categories: Type I (8.3%), the VA enters the spinal canal below the C1 posterior arch, and courses below the occipitalized C1 lateral mass. Type II (25%), the VA enters the spinal canal below the C1 posterior arch, and the course of VA is on the posterior surface of the occipitalized C1 lateral mass, or makes a curve on it. Type III (61.1%), VA ascends laterally after leaving the C2 transverse foramen, enters an osseous foramen created between the atlas and occiput, then reaches the cranium. Type IV (5.6%), the VA is absent. Here, we regarded types I and II in the article of Wang et al.10 as different subtypes of FIA as reported by Wakao et al.,11 but their proportion is much higher than that of Wakaos in normal people, and the proportion of type III of entering an osseous foramen in Wang's article was also high. This result might mean that different bone deformities may lead to an increased incidence of associated VA deformities. From the 2 different group of patients in our research, the rate of VA deformity in sandwich AAD patients was much higher and more types of VA variations existed.

1. The Characteristics of VA Variations in Sandwich AAD Patients

In our case series, due to the existence of the upper and lower fusion regions in sandwich AAD patients, we first proposed a 3-part formula to describe the variations of VA in more detail. In this article, we further divided the VA segment at craniovertebral junction of sandwich AAD patients into 3 regions—U, S, and L regions. Since there were different surgical operations in different regions, this division of the VA was conductive to the operators to make detailed preoperative planning.

As can be seen from our results, due to the atlas occipitalization in the U-region, the highest incidence of deformity was the type I of VA entering an osseous foramen, with proportion as high as 52.6%; Type III of coursing an incomplete osseous canal has not been reported before, and their occurrence was due to incomplete ossification of C1 posterior arch. So, the electronic exposure needs to be careful with this type during the posterior procedure, to protect the partial lie-open VA.

The highest occurrence of VA malformation in the S-region was type II of VA making a curve and turning directly medially towards the spinal canal below the C1 posterior arch (34.4%), and it was mostly tortuous on the surface of C1-2 lateral mass joint. As for duplicated type III, 5 of the 6 cases was that one branch ascended under the posterior arch of C1 and merged with another branch passing through the transverse foramen of C1, while 1 case was unique that both branches merged and entered the spinal canal directly under the posterior arch of C1 without passing through the C1 transverse foramen (Fig. 3D, d). This unique duplicated variation has not been reported before.

In the L-region, high-riding VA and VA loop were high incidence, accounting for 10.4% and 10.9% respectively, and these 2 deformities both occurred simultaneously in 7 cases, which was vital to guide our selection of surgical methods. To our knowledge, VA Loop has been rarely reported in the upper cervical spine previously. Eksi et al.12 have mentioned in his article that VA loops were more commonly observed at V2 segment (90.5%), while they were less common at V1 (7.6%) and V3 (1.9%) segments in the literature. And in his report, the occurrence segments of Loop were C4–5 (31.4%), C3–4 (20%), and C5–6 (18.1%), respectively.

2. Special Surgical Strategies for the Variations

As for the surgical treatment, VA malformations in different parts also lead to different risks.

In the U-region, the risk of injury to the VA during the posterior C1 lateral mass screw (C1LMS) was highlighted. Hong et al.13 has suggested that C1 lateral mass screw insertion can be dangerous in cases of a persistent FIA where the VA courses abnormally below the C1 posterior arch. But Wang et al.10 proposed that not all FIAs were at risk during C1LMS placement, and the high risk of VA injury was only for those FIAs that were tortuous on the surface of the C1 lateral mass, and the FIAs that
went under the C1 lateral mass were relatively safe during placement of the C1LMS. Li et al.14 reported 120 cases of VA malformations in patients with BI and atlas occipitalization in 2018. In his classification, 2 types of variations that would increase the risk of VA injury with C1LMS were type of entering an osseous foramen and FEN, and he proposed to reduce the risk of VA injury by changing the entry point and direction of C1MS. In our classification of the upper fusion region, we believed that type I of passing through an osseous foramen and type III of being exposed partly due to incomplete occipitalization of the C1 posterior arch had an increased risk of injury during C1LMS placement. In type I, it was important to evaluate the shape of VA in the osseous foramen and the location of the osseous foramen preoperatively. In type III, due to the incomplete ossification of the posterior arch of the atlas, there is no bone protection on part of the surface of the VA, so special care should be taken during the exposure of the posterior arch of C1. For type II of VA entering the spinal canal directly under the posterior arch of atlas, in our cases, since they did not perforate the C1 transverse foramen, most of their course was tortuous on the joint surface of the lateral mass joint of C12, so the risk of injury with C1LMS was relatively small.

In the S-region, VA injury is mainly caused during the operation of the lateral mass joint. Li et al.14 have mentioned that VA could be much more easily injured during the surgical manipulations around the facets, such as the placement of spacers or Titanium Cages between the C1–2 facets. In our classification, we have similar opinions. Type II of VA in this region is tortuous on the surface of the C1–2 lateral mass facets, so the risk of VA injury is greatly increased when handling the lateral mass joint. In addition, type III and type V of this region have the same risk in the lateral mass joint operation, especially type V with C1–2 level PICA which may lead to serious consequences such as postoperative cerebellar infarction after injury.

In the L-region, we should focus on the presence of high-riding VA and VA loop during C2 pedicle screw (C2PS) insertion. The risk of injury to VA caused by C2PS insertion due to high-riding VA has been reported,15 but the risk of VA loop in upper cervical spine during surgery have not been reported before. Park et al.16 reported the incidence of VA loop as 0.6% in patients with vertebral bone erosion or widened transverse foramen. Then, the enlargement of the transverse foramen leads to the hypoplasia pedicle, which is too thin to accommodate C2PS. Moreover, when the VA loop curves inwards the spinal canal, it results in a significantly increased risk of injury during posterior or surgical procedures. Therefore, either of these 2 VA deformities increases the risk of injury to the VA during surgery at the lower fusion region, especially for the VA with these 2 deformities together. Besides, in this region, we found a case where the VA went from the C3 transverse foramen to the C1 transverse foramen without passing through the C2 transverse foramen, which might increase the risk of VA injury during the operation of the exposure of the C2 pedicle.

3. The Dominance of VA in Sandwich AAD and Its Clinical Solutions

For the dominance of VA, this type of malformation was through 3 regions. The diameters of the VA are of equal size in only 6%–26% of patients in angiographic reported in post studies, and the left VA is often larger than the right VA, this is called the VA dominance (VAD) because of asymmetric VA.17,18 Individual with VAD usually do not have symptoms of Verterobasilar insufficiency.19 Smith and Bellon20 have reported that the diameter of the dominant VA should be at least 30% larger than the other side. We followed this standard and considered the unilateral absence type as the contralateral dominant type in our cases. And we found that there was no statistically significant difference in the rate of unilateral-side VAD between the 2 group patients. But there might be a relationship between the side of VA variation and the VAD. We chose a subgroup including 31 patients with VAD and unilateral VA variation from the sandwich AAD patients to analyze if there was a relationship between the side of VA variation and VAD using chi-square test. The statistical results showed that the rate of variation in the dominant side of VA was significantly higher than in the recessive side (p < 0.05) (Table 3). Although VA variation may occur in the case without VAD and there were bilateral VA variations or bilateral regular VA in the case with VAD, we still found that the dominant side of VA has a higher rate of VA variation, which reminded us to pay high attention to the dominant VA during surgery. Besides, the VAD was same at the risk of injury as unilateral absence type VA during the surgery. Then we have to evaluate the dominant VA carefully preoperatively to avoid the occurrence of disastrous results.

<table>
<thead>
<tr>
<th>Table 3. Relationship between the side of VA variation and the VAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAD</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Left VAD</td>
</tr>
<tr>
<td>Right VAD</td>
</tr>
</tbody>
</table>

VA, vertebral artery; AAD, atlantoaxial dislocation.
CONCLUSION

In sandwich AAD patients, deformities of vertebral arteries in the upper cervical spine region are more common, and the same VA may have deformities at different levels that severely affect surgical procedures. Therefore, for these patients, preoperative imaging examination of VA is very important, which is essential to guide us to avoid injury of VA during surgery.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

https://doi.org/10.14245/ns.2142726.363
Complications of Posterior Fusion for Atlantoaxial Instability in Children With Down Syndrome

Yoshiki Takeoka1,2, Kenichiro Kakutani1, Hiroshi Miyamoto2,3, Teppei Suzuki2, Takashi Yurube1, Izumi Komoto4, Masao Ryu2, Shinichi Satsuma4, Koki Uno2

1Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
2Department of Orthopaedic Surgery, National Hospital Organization Kobe Medical Center, Kobe, Japan
3Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama, Japan
4Department of Orthopaedic Surgery, Kobe Children’s Hospital, Kobe, Japan

Objective: To clarify the complications of posterior fusion for atlantoaxial instability (AAI) in children with Down syndrome and to discuss the significance of surgical intervention.

Methods: Twenty pediatric patients with Down syndrome underwent posterior fusion for AAI between February 2000 and September 2018 (age, 6.1 ± 1.9 years). C1–2 or C1–3 fusion and occipitocervical fusion were performed in 14 and 6 patients, respectively. The past medical history, operation time, estimated blood loss (EBL), duration of Halo vest immobilization, postoperative follow-up period, and intra- and perioperative complications were examined.

Results: The operation time was 257.9 ± 55.6 minutes, and the EBL was 101.6 ± 77.9 mL. Complications related to the operation occurred in 6 patients (30.0%). They included 1 major complication (5.0%): hydrocephalus at 3 months postoperatively, possibly related to an intraoperative dural tear. Other surgery-related complications included 3 cases of superficial infections, 1 case of bone graft donor site deep infection, 1 case of C2 pedicle fracture, 1 case of Halo ring dislocation, 1 case of pseudoarthrosis that required revision surgery, and 1 case of temporary neurological deficit after Halo removal at 2 months postoperatively. Complications unrelated to the operation included 2 cases of respiratory infections and 1 case of implant loosening due to a fall at 9 months postoperatively.

Conclusion: The complication rate of upper cervical fusion in patients with Down syndrome remained high; however, major complications decreased substantially. Improved intra- and perioperative management facilitates successful surgical intervention for upper cervical instability in pediatric patients with Down syndrome.

Keywords: Pediatric Down syndrome, Surgical complication, Atlantoaxial instability, Posterior fusion, Atlantodental interval, Cervical spine

INTRODUCTION

Atlantoaxial instability (AAI) occurs in 14.6%–22.2% of individuals with Down syndrome, which is more frequent than that in normal children and results from ligament laxity and odontoid dysplasia. Surgical treatment of AAI in children with Down syndrome is challenging because of the small bony structures, anatomical variety, and high complication rate. Posterior arthrodesis of the upper cervical spine in patients with Down syndrome had 73.3%–100% of complications in the 1990s. While surgeries have been recommended in AAI patients with associated neurological symptoms, prophylactic arthrodesis for asymptomatic cases has been controversial. However, perioperative management, including radiographic evaluations, surgical techniques with spinal instrumentation, and anesthesia, has progressed markedly, enabling safer surgery. After posterior fusion with C1–2 transarticular screws was first reported in 1992, C1 lateral mass screws and C2 pedicle screws have been
Surgical Complications in Pediatric Down Syndrome

Takeoka Y, et al.

These techniques have been applied in pediatric patients and have demonstrated improved stabilization and fusion rate. Although several reports have shown acceptable outcomes in pediatric upper cervical spine surgeries since 2000, they included small populations of Down syndrome. Therefore, the complication rate is difficult to estimate. The purpose of this study was to clarify the complications of posterior fusion for AAI in children with Down syndrome and the significance of surgical intervention.

MATERIALS AND METHODS

This study was approved by the Institutional Review Board (IRB) of Kobe University Graduate School of Medicine (IRB No. B190002). Written informed consent was obtained from each patient and family. Further, they were informed that data from the cases would be submitted for publication and gave their consent. This study was conducted following the principles of the Declaration of Helsinki and with the laws and regulations of Japan.

A total of 20 pediatric patients with Down syndrome underwent posterior fusion for AAI in the authors’ hospitals between February 2000 and September 2018 (7 men and 13 women; age, 6.1 ± 1.9 [3–9] years) (Table 1). Prior to surgery, a combination of lateral cervical radiography, computed tomography (CT), and magnetic resonance imaging (MRI) were performed. The surgical indication was an atlantodental interval (ADI) larger than 7.0 mm with smaller space available for the cord (SAC) than 10.0 mm and os odontoideum even without symptoms. All screws and plates were placed under fluoroscopic guidance. The constructs included C1 lateral mass screws, C2 laminar screws, C2 or C3 hooks, rectangular rods with sublaminar wiring, and occipital plates.

The past medical history, operation time, estimated blood loss (EBL), duration of postoperative Halo vest immobilization, postoperative follow-up period, and intra- and perioperative complications of these patients were examined. Values are expressed as the mean ± standard deviation. Fisher exact test was used to assess the complication rate between rod-wiring/hook constructs and rod-screw constructs.

RESULTS

C1–2 or C1–3 fusion and occipitocervical (O-C) fusion were performed in 14 and 6 patients, respectively. All patients underwent primary surgeries performed by a single surgeon. Preop-

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, men:women</td>
<td>7:13</td>
</tr>
<tr>
<td>Age (yr), mean ± SD (range)</td>
<td>6.1 ± 1.9 [3–9]</td>
</tr>
<tr>
<td>Height (cm), mean ± SD</td>
<td>103.5 ± 10.6</td>
</tr>
<tr>
<td>Weight (kg), mean ± SD</td>
<td>17.9 ± 4.5</td>
</tr>
<tr>
<td>Past medical history</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>17</td>
</tr>
<tr>
<td>Hypoacusis, serous otitis media</td>
<td>5</td>
</tr>
<tr>
<td>Dysopia</td>
<td>4</td>
</tr>
<tr>
<td>Gastrointestinal anomalies</td>
<td>3</td>
</tr>
</tbody>
</table>

SD, standard deviation.

Fig. 1. Distribution of intraoperative data and postoperative Halo immobilization. (A) Operation time. (B) Intraoperative estimated blood loss. (C) Duration of Halo vest immobilization.

https://doi.org/10.14245/ns.2142720.360

www.e-neurospine.org 779
erative ADI was 7.6 ± 1.5 mm and SAC was 9.0 ± 2.1 mm. Lateral radiography revealed 1 case of odontoid hypoplasia and the other 19 of os odontoideum. One patient had a hypoplastic posterior arch of the atlas. None of the patients had subaxial instability according to the lateral flexion-extension images. No patients presented abnormal neurological findings preoperatively. Seventeen patients had past medical history of cardiovascular diseases, such as atrial septal defect (ASD), endocardial cushion defect, patent ductus arteriosus, and ventricular septal defect (VSD); however, their cardiac functions were maintained to

Table 2. Clinical and surgical characteristics

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age (yr)</th>
<th>Sex</th>
<th>Past medical history</th>
<th>Fusion levels</th>
<th>Instrumentation</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>W</td>
<td>ECD, pulmonary atresia, bilateral equinus feet, scoliosis, developmental dysplasia of left hip</td>
<td>O–C2</td>
<td>Rectangular rod+sublaminar wiring</td>
<td>Superficial infection, pseudoarthrosis (resulting in revision surgery)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>M</td>
<td>ASD, PDA, pulmonary hypertension</td>
<td>O–C3</td>
<td>Rectangular rod+sublaminar wiring</td>
<td>Bronchitis</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>W</td>
<td>ECD (postoperative brain infarction resulting in left hemiparesis)</td>
<td>O–C3</td>
<td>Occipital plate+C2 and C3 hook</td>
<td>Temporary muscle weakness of right upper and lower limbs after Halo removal</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>M</td>
<td>Common atrioventricular valve port, Hirschsprung’s disease</td>
<td>O–C2</td>
<td>Occipital plate+C2 PS</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>W</td>
<td>ASD, VSD</td>
<td>O–C2</td>
<td>Occipital plate+C2 PS</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>M</td>
<td>ASD, VSD</td>
<td>C1–2</td>
<td>C1 LMS+C2 PS</td>
<td>Implant loosening due to fall</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>W</td>
<td>ASD, VSD</td>
<td>C1–3</td>
<td>C1 LMS+C2 Left PS+C3 right PS</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>W</td>
<td>ASD, VSD</td>
<td>C1–2</td>
<td>C1 LMS+C2 PS</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>W</td>
<td>ASD, hypoacusis, glaucoma</td>
<td>C1–2</td>
<td>C1 LMS+C2 PS</td>
<td>Hydrocephalus (related to intraoperative dural tear), superficial infection</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>M</td>
<td>VSD, aberrant right subclavian artery, pulmonary hypertension</td>
<td>C1–2</td>
<td>C1 LMS+C2 laminar screw</td>
<td>Halo ring dislocation, deep infection (iliac crest)</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>W</td>
<td>VSD, hypoacusis, retinopathy of prematurity, strabismus</td>
<td>C1–2</td>
<td>C1 LMS+C2 laminar screw</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>W</td>
<td>Recurrent pneumonia and bronchitis</td>
<td>C1–2</td>
<td>C1 LMS+C2 right PS and laminar screw</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>W</td>
<td>Atrioventricular septal defect, tricuspid valve insufficiency</td>
<td>C1–2</td>
<td>C1 LMS+C2 PS</td>
<td>Influenza</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>M</td>
<td>congenital esophageal atresia, recurrent laryngeal nerve paralysis, epilepsy, hypoacusis</td>
<td>C1–2</td>
<td>C1 LMS+C2 PS</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>W</td>
<td>ASD, duodenal atresia</td>
<td>C1–2</td>
<td>C1 LMS+C2 PS</td>
<td>None</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>M</td>
<td>ASD, cataract</td>
<td>C1–2</td>
<td>C1 LMS+C2 left PS and laminar screw</td>
<td>Intraoperative C2 pedicle fracture</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>W</td>
<td>Serous otitis media</td>
<td>C1–2</td>
<td>C1 LMS+C2 PS</td>
<td>None</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>M</td>
<td>ASD, strabismus, hypermetropia</td>
<td>C1–2</td>
<td>C1 LMS+C2 left PS and laminar screw</td>
<td>None</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>W</td>
<td>Aberrant right subclavian artery, hypoacusis</td>
<td>C1–2</td>
<td>C1 LMS+C2 PS</td>
<td>None</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>W</td>
<td>ASD, PDA</td>
<td>O–C2</td>
<td>Occipital plate+C2 left PS and laminar screw</td>
<td>Superficial infection</td>
</tr>
</tbody>
</table>

ECD, endocardial cushion defect; ASD, atrial septal defect; PDA, patent ductus arteriosus; VSD, ventricular septal defect; PS, pedicle screw; LMS, lateral mass screw.
tolerate general anesthesia. Hypoacusis or serous otitis media was found in 5; dysopia, 4; and gastrointestinal anomalies in 3 patients. One patient had recurrent pneumonia and bronchitis, although no congenital anomalies were diagnosed in the respiratory system (Table 1).

The operation time was 257.9 ± 55.6 minutes (182–365 minutes) (Fig. 1A), and the EBL was 101.6 ± 77.9 mL (22–330 mL) (Fig. 1B). None of the patients required a transfusion. Postoperative Halo immobilization was applied for 56.1 ± 23.7 days (0–90 days) (Fig. 1C). The postoperative follow-up period was 9.1 ± 4.8 years (2.0–19.8 years).

Complications related to the operation occurred in 6 patients (30.0%) (Table 2). They included one major complication in 1 patient (5.0%): hydrocephalus at 3 months postoperatively, possibly related to an intraoperative dural tear. Other complications included 3 cases of superficial surgical site infections, 1 case of deep infection in the bone graft donor site (iliac crest), 1 case of C2 pedicle fracture, 1 case of Halo ring dislocation at postoperative day 1, 1 case of pseudoarthrosis resulting in a revision surgery, and 1 case of temporary neurological deficit after Halo removal at 2 months postoperatively for an unknown reason. The case with pseudoarthrosis (case 1) had no postoperative complications in the revision surgery, which was not included in this study, and achieved bone union after the second surgery. The other 19 cases obtained bone union within 12 months. The complications that were indirectly related to the operation included 2 cases of respiratory infections and 1 case of implant loosening due to a fall at 9 months postoperatively (Table 3). No permanent or severe neurological complications related to surgery and perioperative death were observed. During the follow-up, no subaxial malalignment significant adjacent disc degeneration, kyphotic changes, or hardware failure were observed.

To clarify the difference of complication rate between the construct type, we compared 3 cases with rod-wiring/hook constructs and 17 cases with rod-screw constructs. Surgery-related complication was observed in 2 cases with rod-wiring/hook constructs and 4 with rod-screw constructs (p = 0.20). Surgery-unrelated complication was found in 1 with rod-wiring/hook constructs and 2 with rod-screw constructs (p = 0.40).

1. Illustrative cases

1) Case 8

A 6-year-old girl was diagnosed with AAI by a pediatrician; however, she did not present any symptoms of cervical myelopathy or radiculopathy. She underwent cardiac surgery for ASD and VSD at 5 months of age, and her cardiac function was maintained. Lateral radiography indicated that AAI and the atlas were irreducible even at the extension position (Fig. 2A). We performed C1–2 fusion with C1 lateral mass screws and C2 pedicle screws, transplanting a bone graft from the right iliac crest (Fig. 2B). Because this case had an irreducible atlas, we gently release and loosen C1–2 facet joints followed by gradual reduction with C1 lateral mass screws and C2 pedicle screws. Upon reduction, the assistant surgeon carefully pushes the C2 spinous process, and the primary surgeon tightens the screws and rods. The lateral mass screw successfully reduced the dislocation of C1 and enabled the preservation of the posterior arch of the atlas. The operation time was 296 minutes, and the EBL was 330 mL. No intraoperative and postoperative complications were observed. After the application of the Halo vest for 2 months, followed by a cervical collar for 8 months, bone union was achieved. At the latest follow-up, 6 years postoperatively, no deterioration was found in clinical symptoms and radiographic features (Fig. 2C).

2) Case 9

A 4-year-old girl was diagnosed with AAI by a pediatrician, although she did not have any neurological symptoms. She underwent surgery for ASD at 6 months of age and her cardiac function was assessed to tolerate general anesthesia and cervical surgery. Lateral radiography indicated that AAI and the atlas were overreduced, that is posterior subluxation, at the extension position (Fig. 3A). We performed C1–2 fusion with C1 lateral mass screws and C2 pedicle screws, transplanting a bone graft from the right iliac crest (Fig. 3B). In the cases of os odon-

Table 3. Summary of the complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>No. of complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major complications (1 in 1 patient)</td>
<td></td>
</tr>
<tr>
<td>Hydrocephalus (related to dural tear)</td>
<td>1</td>
</tr>
<tr>
<td>Other surgery-related complications (8 in 6 patients)</td>
<td></td>
</tr>
<tr>
<td>Superficial infection</td>
<td>3</td>
</tr>
<tr>
<td>Deep infection (bone graft donor site: iliac crest)</td>
<td>1</td>
</tr>
<tr>
<td>C2 pedicle fracture</td>
<td>1</td>
</tr>
<tr>
<td>Halo ring dislocation</td>
<td>1</td>
</tr>
<tr>
<td>Pseudoarthrosis (resulting in revision surgery)</td>
<td>1</td>
</tr>
<tr>
<td>Temporary muscle weakness after Halo removal</td>
<td>1</td>
</tr>
<tr>
<td>Surgery-unrelated complications (3 in 3 patients)</td>
<td></td>
</tr>
<tr>
<td>Respiratory infection</td>
<td>2</td>
</tr>
<tr>
<td>Implant loosening due to a fall</td>
<td>1</td>
</tr>
</tbody>
</table>
Surgical Complications in Pediatric Down Syndrome

Fig. 2. Case 8. Six-year-old girl. (A) Preoperative lateral radiograph of the cervical spine at neutral and extension positions. C1 was irreducible even at the extension position. (B) Postoperative lateral radiography and computed tomography (CT) reconstruction of C1 and C2. Successful reduction of C1 and appropriate insertion of screws are shown. (C) Lateral radiograph at the latest follow-up at 6 years postoperatively. No instrument-related abnormal findings and subaxial deformity were found.

Fig. 3. Case 9. Four-year-old girl. (A) Preoperative lateral radiograph of the cervical spine at neutral and extension positions. C1 was overreduced (posterior subluxation) at the extension position. (B) Postoperative lateral radiography and computed tomography (CT) reconstruction of C1 and C2. Appropriate C1 reduction and screw insertion are shown. (C) Brain CT images after the diagnosis of hydrocephalus. Dilated cerebral ventricles were found, and ventriculoperitoneal shunting was performed. Hydrocephalus resolved after 3 months. (D) Lateral radiograph at the latest follow-up at 6 years postoperatively. No instrument-related abnormal findings and subaxial deformity were found.

With posterior subluxation of atlas, os odontoideum protrudes into the spinal canal. Therefore, overreduction could result in cord compression and we have made a careful and mild reduction of the atlas. Because a dural tear occurred during the surgery, the tear was repaired using Prolene sutures. The operation time was 365 minutes, and the EBL was 120 mL. Although slight superficial infection and protracted wound healing with subcutaneous accumulation of cerebrospinal fluid (CSF) were observed, no other complications were found until Halo removal at 2 months postoperatively. Four days after Halo removal, she developed a convulsive seizure. Brain CT showed hydrocephalus and ventriculoperitoneal shunting was performed immediately. Hydrocephalus gradually resolved (Fig. 3C). After the application of a cervical collar for 10 months,
bone union was achieved. At the latest follow-up, 6 years postoperatively, no deterioration was found in clinical symptoms and radiographic features (Fig. 3D).

DISCUSSION

The surgery-related complication rate of upper cervical fusion in pediatric patients with Down syndrome remained high at 30.0%. However, the percentage of major complications decreased substantially (5.0%), and no life-threatening or surgery-related severe neurological complications occurred. The overall complication rate in the current study was comparable to that reported in adult patients with rheumatoid arthritis (8.1%–41.8%). A strength of this study was relatively large population treated by a single surgeon, while a review/meta-analysis article has been published including various backgrounds and treatments.

Neurological complications are occasionally unpredictable; however, they can be minimized by the development of management approaches, such as preoperative imaging, intraoperative fluoroscopic guidance or navigation, and neurophysiological monitoring. One patient (case 3) showed temporary muscle weakness in the right upper and lower limbs after Halo removal at 3 months postoperatively. However, the cause of muscle weakness could not be identified, even with image inspection. This late-phase neurological complication can only be recognized and handled by careful postoperative observation. Hydrocephalus, found in case 9, is not a common complication of spinal surgery. Several cases have been reported as late complications: 1 month after a C2 dumbbell tumor resection, 10 months after lumbar decompression and fusion, and 5 months after a stab injury to the upper cervical spine. They do not appear to be specific to Down syndrome but are related to dural tear and repair. In case 9, the detailed cause of hydrocephalus is unclear. However, the patient exhibited dural tear followed by subcutaneous accumulation of CSF without any neurological symptoms under Halo vest immobilization and developed a convulsive seizure after Halo removal at postoperative 2 months. Thus, we estimated that dural tear and CSF leakage could be related to hydrocephalus. Once a dural tear is recognized, careful and long-term postoperative follow-up is warranted for symptoms, such as headache, nausea, and convulsions. In cases 3 and 9, these complications were observed immediately after Halo removal. Complications related to Halo vest immobilization are frequent in children, most of which are pin site infections and loosening. Although neurological complications immediately after Halo removal has not been reported or elucidated, the sudden change in the axial pressure or alignment could have triggered the complications in our cases. The reason why we apply Halo vest immobilization is the difficulty in rest due to mental retardation and the demand for rigid fixation in the light of systemic joint laxity in Down syndrome. We applied Halo vest for 3 months when only hooks and wiring are available. However, after using lateral mass/pedicle screws, we have shortened the duration; as short as 1 month. We regard Halo vest as a support for bone union in patients with Down syndrome.

Pseudoarthrosis may be a major concern in fusion surgery for Down syndrome. For successful bone union, rigid fixation and substantial bone grafting are required, in which C1 lateral mass screws play a key role. The C1 lateral mass screws not only facilitate improved stabilization but also enable reduction of the dislocated atlas. This results in the preservation of the posterior arch of the atlas, which is a precious bed for bone grafting, as shown in case 8. A recent meta-analysis showed that screw fixation for pediatric AAI in patients with Down syndrome significantly reduced the loss of reduction or pseudoarthrosis. Segal et al. reported that 10 pediatric patients with Down syndrome had cervical or O-C fusion with modified Gallie technique, resulting in 100% surgery-related complications. Among their cases, 7 of 10 patients exhibited graft absorption and/or hardware failure, which could be related to insufficient fixation. Doyle et al. reported 15 patients with Down syndrome, including 9 pediatric cases. In their study, 10 of 15 patients showed non-union and/or loss of reduction, which could be caused by a lack of rigid fixation. In our cases, especially after adopting C1 lateral mass screw, we consider that rigid fixation has been achieved owing to advance in the cervical instrumentation and the surgical techniques. This may be one reason for lower complication rate. Stabilization with C1 lateral mass screws helps avoid O-C fusion and maintain the O-C motion segment. Initially, we selected C1–2 fusion if the atlas was reducible at extension position of lateral radiography and O-C fusion if it was irreducible. However, after demonstrating that C1 lateral mass screws can reduce the irreducible atlas, we apply O-C fusion only for the cases in which C1 lateral mass screws cannot be inserted. We extended the fusion to C3 when we used hook/wiring or C2 was not available as an anchor due to anatomical reasons. After we started using C1 lateral mass screws for pediatric patients in 2009, no pseudoarthrosis was found in C1–2 fusion cases. However, rigid fixation in children can affect the growth of the C2 vertebral body and fused-disc height, as well as the subaxial alignment. Although there were no cases with postopera-
tive subaxial malalignment in our study, radiographic evaluation should be carefully continued.

Another concern is infection. Four surgical site infections, including 3 superficial infections and 1 deep infection, and 3 respiratory infections were found in our patients. Postoperative infection may be related to immunodeficiency in patients with Down syndrome, which is not easy to prevent completely. The most optimal efforts should be careful observation and appropriate treatment once the infection is recognized.

A radiographic guideline, suggested in 2005, stated that surgical intervention is required when the ADI is >9.9 mm or the ADI is 4.5–10 mm with neurological deficit and evidence of spinal cord compression on MRI. In this guideline, high-risk activities, such as gymnastics and soccer, were restricted when the ADI was higher than 4.5 mm even without neurological abnormalities, which indicated that even low-energy head injury could damage the spinal cord in these patients. While the incidence of symptomatic AAI is 10.0%-17.5% in all pediatric AAI patients with Down syndrome, it is difficult to predict the progressive widening of the ADI and the appearance of neurological deficits due to the lack of evidence in the natural course of AAI. Therefore, careful radiographic follow-up and physical assessment are required. Furthermore, we recommend early surgical intervention even without symptoms; our current surgical indication for AAI in pediatric patients with Down syndrome is an ADI larger than 7.0 mm with symptoms or an ADI larger than 7.0 mm with smaller SAC than 10.0 mm and os odontoideum without symptoms. We regard os odontoideum as a possible indicator of severe AAI. The cases with os odontoideum could have posterior subluxation at extension position as shown in case 9, which is sometimes difficult to point out. Because anterior arch rides on the axis at extension in posterior subluxation, careful interpretation of radiography is warranted. A high complication rate may have been the main reason why patients with Down syndrome are hesitant to undergo surgery. However, our results demonstrated that the rate is no longer extremely high compared to that in patients with other comorbidities such as rheumatoid arthritis.

This study has several limitations. First, the study has a retrospective design. Second, although O-C fusions and C1–2 fusions may differ in terms of their surgical invasion or stress for patients, we included them together. This difference could affect the incidence or severity of the complications. While we did not find specific complications to O-C fusions or C1–2 fusions, this difference could affect the incidence or severity of the complications.

CONCLUSION

While careful preoperative preparation and postoperative observation are undoubtedly needed, improved intra- and perioperative management can facilitate successful surgical intervention for upper cervical instability in pediatric patients with Down syndrome. Although the overall complication rate of upper cervical fusion in Down syndrome remains high, clinicians should not hesitate to select surgical intervention.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

Spinal Fractures in Ankylosing Spondylitis: Patterns, Management, and Complications in the United States – Analysis of Latest Nationwide Inpatient Sample Data

Sandeep Kandregula¹, Harjus S. Birk¹, Amey Savardekar¹, William Chris Newman¹, Robbie Beyl², Krystle Trosclair¹, Bharat Guthikonda¹, Anthony Sin¹

¹Department of Neurosurgery, Ochsner LSU Health Shreveport, Shreveport, LA, USA
²Department of Statistics, Pennington Biomedical Research Center, Baton Rouge, LA, USA

Objective: Ankylosing spondylitis (AS) is a rheumatic inflammatory disease marked by chronic inflammation of the axial skeleton. This condition, particularly when severe, can lead to increased risk of vertebral fractures attributed to decreased ability of the stiffened spinal column to sustain normal loads. However, little focus has been placed on understanding the locations of spinal fractures and associated complications and assessing the correlation between these. In this review, we aim to summarize the complications and treatment patterns in the United States in AS patients with spinal fractures, using the latest Nationwide Inpatient Sample (NIS) database (2016–2018).

Methods: We analyzed the NIS data of years 2016–2018 to compare the fracture patterns and complications.

Results: A total of 5,385 patients were included. The mean age was 71.63 years (standard deviation [SD], 13.21), with male predominance (83.8%). The most common population is Whites (77.4%), followed by Hispanics (7.9%). The most common fracture level was thoracic level (58.3%), followed by cervical level (38%). Multiple fracture levels were found in 13.3% of the patients. Spinal cord injury (SCI) was associated with 15.8% of the patients. The cervical level had a higher proportion of SCI (26.5%), followed by thoracic level (9.2%). The mean Elixhauser comorbidity score was 4.82 (SD, 2.17). A total of 2,365 patients (43.9%) underwent surgical treatment for the fractures. The overall complication rate was 40.8%. Respiratory complications, including pneumonia and respiratory insufficiency, were the predominant complications in the overall cohort. Based on the regression analysis, there was no significant difference (p = 0.45) in the complication rates based on the levels. The presence of SCI increased the odds of having a complication by 2.164 times (95% confidence interval, 1.722–2.72; p ≤ 0.001), and an increase in Elixhauser comorbidity score predicted the complication and in-hospital mortality rate (p ≤ 0.001).

Conclusion: AS patients with spinal fractures have higher postoperative complications than the general population. The most common fracture location was thoracic in our study, although it differs with few studies, with SCI occurring in 1/6th of the patients.

Keywords: Ankylosing spondylitis, Spinal fractures, Respiratory complications, National Inpatient Sample
INTRODUCTION

Ankylosing spondylitis (AS) is a rheumatic disorder marked by chronic inflammation of the axial skeleton.\(^1\) It is a relatively rare disease with an incidence of 0.5–14 per 100,000 people per year.\(^2\) This condition, particularly when severe, can lead to increased risk of vertebral fractures attributed to decreased ability of the stiffened spinal column to sustain normal loads (decreased tensile strength of the spine as a unit).\(^3\) A population-based study reported an odds ratio of 7.7 for sustaining a spinal fracture in patients with AS compared to the average population. With each year of increasing age, a 1.3% risk of having a fracture is added.\(^3\) The reported prevalence of spinal fractures in AS patients is highly variable (1.4%–58%). Spinal trauma literature details a 6%–11% mortality rate in AS patients who underwent hospitalization for traumatic spinal fracture.\(^4\) Spinal cord injury (SCI) is a severe complication after traumatic fracture of the ankylosed spine.\(^2,5\) A Finnish national study reported the incidence of SCI in AS patients 11.4 times more than the average population.\(^6\)

The etiology behind vertebral fractures in AS patients stems from inflamed facet joints and ligaments and stiffened intervertebral spaces, resulting in decreased spinal column flexibility.\(^1\) The classic “bamboo spine” develops with even marginal syndesmophyte formation, contributing to compromised bone integrity (Fig. 1).\(^7\) Literature advocates comprehensive spinal imaging in AS patients who suffer from even mild trauma to ensure fractures are not overlooked. However, little focus has been placed on understanding the locations of spinal fractures and postfracture complications and the correlation between these. The extra-articular manifestations in AS affect the other systems (cardiovascular, respiratory, and renal, etc.), further complicating the postoperative course. In this review, we aim to summarize the complications and treatment patterns in the United States in AS patients with spinal fractures, using the latest Nationwide Inpatient Sample (NIS) database (2016–2018).

MATERIALS AND METHODS

1. Study Population

Data were extracted from the NIS database for the years 2016–2018 (3 years). NIS data is the largest database providing data of more than 7 million hospitalizations in the United States. The data is coded in the form of diagnostic and procedural International Statistical Classification of Diseases, 10th revision (ICD-10) codes.

Fig. 1. Pathogenesis involved in ankylosing spondylitis.
Kandregula S, et al.

Spinal Fractures in Ankylosing Spondylitis

Table 1. Details of the ICD-10 codes used for data extraction
Diagnosis

ICD-10 code

Ankylosing spondylitis M45.(1-9)
Cervical fractures and Base codes: S12.0(X), S12.1(X), S12.2X, S12.3(X), S12.4(X), S12.5(X), S12.6(X), S12.8(X), S12.9(X)
dislocations
Thoracic fractures and Base codes: S22.00(x), S22.01(x), S22.02(x), S22.03(x), S22.04(x), S22.05(x), S22.06(x), S22.07(x), S22.08(x)
dislocations
Lumbar fracture

Base codes: S32.00(x), S32.01(X), S32.02(X), S32.03(X), S32.04(X), S32.05(X)

Sacral level

Base codes: S32.11(X), S32.12(X), S32.13(X), S32.14(X), S32.15(X), S32.16(X), S32.17(X), S32.19(X)

Spinal cord injury

S14(X), S24(X), S34(X)

Fusion

0RG0070,0RG0071,0RG007J,0RG00A0,0RG00AJ,0RG00J0,0RG00J1,0RG00JJ,0RG00K0,0RG00K1,0RG00KJ,0RG037
0,0RG0371,0RG037J,0RG03A0,0RG03AJ,0RG03J0,0RG03J1,0RG03JJ,0RG03K0,0RG03K1,0RG03KJ,0RG0470,0RG
0471,0RG047J,0RG04A0,0RG04AJ,0RG04J0,0RG04J1,0RG04JJ,0RG04K0,0RG04K1,0RG04KJ,0RG1070,0RG1071,0
RG107J,0RG10A0,0RG10AJ,0RG10J0,0RG10J1,0RG10JJ,0RG10K0,0RG10K1,0RG10KJ,0RG1370,0RG1371,0RG13
7J,0RG13A0,0RG13AJ,0RG13J0,0RG13J1,0RG13JJ,0RG13K0,0RG13K1,0RG13KJ,0RG1470,0RG1471,0RG147J,0R
G14A0,0RG14AJ,0RG14J0,0RG14J1,0RG14JJ,0RG14K0,0RG14K1,0RG14KJ,0RG2070,0RG2071,0RG207J,0RG20A
0,0RG20AJ,0RG20J0,0RG20J1,0RG20JJ,0RG20K0,0RG20K1,0RG20KJ,0RG2370,0RG2371,0RG237J,0RG23A0,0RG
23AJ,0RG23J0,0RG23J1,0RG23JJ,0RG23K0,0RG23K1,0RG23KJ,0RG2470,0RG2471,0RG247J,0RG24A0,0RG24AJ,0
RG24J0,0RG24J1,0RG24JJ,0RG24K0,0RG24K1,0RG24KJ,0RG4070,0RG4071,0RG407J,0RG40A0,0RG40AJ,0RG40J
0,0RG40J1,0RG40JJ,0RG40K0,0RG40K1,0RG40KJ,0RG4370,0RG4371,0RG437J,0RG43A0,0RG43AJ,0RG43J0,0RG
43J1,0RG43JJ,0RG43K0,0RG43K1,0RG43KJ,0RG4470,0RG4471,0RG447J,0RG44A0,0RG44AJ,0RG44J0,0RG44J1,0
RG44JJ,0RG44K0,0RG44K1,0RG44KJ,0RG6070,0RG6071,0RG607J,0RG60A0,0RG60AJ,0RG60J0,0RG60J1,0RG60J
J,0RG60K0,0RG60K1,0RG60KJ,0RG6370,0RG6371,0RG637J,0RG63A0,0RG63AJ,0RG63J0,0RG63J1,0RG63JJ,0RG
63K0,0RG63K1,0RG63KJ,0RG6470,0RG6471,0RG647J,0RG64A0,0RG64AJ,0RG64J0,0RG64J1,0RG64JJ,0RG64K0,
0RG64K1,0RG64KJ,0RG7070,0RG7071,0RG707J,0RG70A0,0RG70AJ,0RG70J0,0RG70J1,0RG70JJ,0RG70K0,0RG7
0K1,0RG70KJ,0RG7370,0RG7371,0RG737J,0RG73A0,0RG73AJ,0RG73J0,0RG73J1,0RG73JJ,0RG73K0,0RG73K1,0
RG73KJ,0RG7470,0RG7471,0RG747J,0RG74A0,0RG74AJ,0RG74J0,0RG74J1,0RG74JJ,0RG74K0,0RG74K1,0RG74
KJ,0RG8070,0RG8071,0RG807J,0RG80A0,0RG80AJ,0RG80J0,0RG80J1,0RG80JJ,0RG80K0,0RG80K1,0RG80KJ,0R
G8370,0RG8371,0RG837J,0RG83A0,0RG83AJ,0RG83J0,0RG83J1,0RG83JJ,0RG83K0,0RG83K1,0RG83KJ,0RG8470
,0RG8471,0RG847J,0RG84A0,0RG84AJ,0RG84J0,0RG84J1,0RG84JJ,0RG84K0,0RG84K1,0RG84KJ,0SG0070,0SG0
071,0SG007J,0SG00A0,0SG00AJ,0SG00J0,0SG00J1,0SG00JJ,0SG00K0,0SG00K1,0SG00KJ,0SG0370,0SG0371,0SG0
37J,0SG03A0,0SG03AJ,0SG03J0,0SG03J1,0SG03JJ,0SG03K0,0SG03K1,0SG03KJ,0SG0470,0SG0471,0SG047J,0SG04
A0,0SG04AJ,0SG04J0,0SG04J1,0SG04JJ,0SG04K0,0SG04K1,0SG04KJ,0SG1070,0SG1071,0SG107J,0SG10A0,0SG10
AJ,0SG10J0,0SG10J1,0SG10JJ,0SG10K0,0SG10K1,0SG10KJ,0SG1370,0SG1371,0SG137J,0SG13A0,0SG13AJ,0SG13J
0,0SG13J1,0SG13JJ,0SG13K0,0SG13K1,0SG13KJ,0SG1470,0SG1471,0SG147J,0SG14A0,0SG14AJ,0SG14J0,0SG14J1
,0SG14JJ,0SG14K0,0SG14K1,0SG14KJ,0SG3070,0SG3071,0SG307J,0SG30A0,0SG30AJ,0SG30J0,0SG30J1,0SG30JJ,0
SG30K0,0SG30K1,0SG30KJ,0SG3370,0SG3371,0SG337J,0SG33A0,0SG33AJ,0SG33J0,0SG33J1,0SG33JJ,0SG33K0,0
SG33K1,0SG33KJ,0SG3470,0SG3471,0SG347J,0SG34A0,0SG34AJ,0SG34J0,0SG34J1,0SG34JJ,0SG34K0,0SG34K1,0
SG34KJ,0SG5070,0SG5071,0SG507J,0SG50A0,0SG50AJ,0SG50J0,0SG50J1,0SG50JJ,0SG50K0,0SG50K1,0SG50KJ,0
SG5370,0SG5371,0SG537J,0SG53A0,0SG53AJ,0SG53J0,0SG53J1,0SG53JJ,0SG53K0,0SG53K1,0SG53KJ,0SG5470,0
SG5471,0SG547J,0SG54A0,0SG54AJ,0SG54J0,0SG54J1,0SG54JJ,0SG54K0,0SG54K1,0SG54KJ,0SG6070,0SG6071,0
SG607J,0SG60A0,0SG60AJ,0SG60J0,0SG60J1,0SG60JJ,0SG60K0,0SG60K1,0SG60KJ,0SG6370,0SG6371,0SG637J,0S
G63A0,0SG63AJ,0SG63J0,0SG63J1,0SG63JJ,0SG63K0,0SG63K1,0SG63KJ,0SG6470,0SG6471,0SG647J,0SG64A0,0S
G64AJ,0SG64J0,0SG64J1,0SG64JJ,0SG64K0,0SG64K1,0SG64KJ

Corpectomy

0P540ZZ,0P840ZZ,0PB40ZX,0PB40ZZ,0PC40ZZ,0PD40ZZ,0PH404Z,0PN40ZZ,0PR407Z,0PR40JZ,0PR40KZ,0PU4
07Z,0PU40JZ,0PU40KZ,0R560ZZ,0RB60ZX,0RB60ZZ,0RC90ZZ,0RG6070,0RG607J,0RG60A0,0RG60AJ,0RG60Z
0,0RG60JJ,0RG60K0,0RG60KJ,0RH604Z,0RH608Z,0RR607Z,0RR60JZ,0RR60KZ,XRG6092,XRG60F3,XRG7092,X
RG70F3,XRG8092,XRG80F3,0Q500ZZ,0Q800ZZ,0QB00ZX,0QB00ZZ,0QC00ZZ,0QD00ZZ,0QH004Z,0QH005Z,
0QN00ZZ,0QR007Z,0QR00JZ,0QR00KZ,0QS004Z,0QS00ZZ,0QS0XZZ,0QU007Z,0QU00JZ,0QU00KZ,0S500ZZ,
0SB00ZX,0SB00ZZ,0SC00ZZ,0SG0070,0SG007J,0SG00A0,0SG00AJ,0SG00J0,0SG00JJ,0SG00K0,0SG00KJ,0SH004J,
0SH008Z,0SN00ZZ,0SR007Z,0SR00JZ,0SR00KZ,0SU007Z,0SU00JZ,0SU00KZ,0P530ZZ,0P830ZZ,0PB30ZX,0PB30
ZZ,0PC30ZZ,0PD30ZZ,0PH304Z,0PN30ZZ,0PR307Z,0PR30JZ,0PR30KZ,0PU307Z,0PU30JZ,0PU30KZ,0R500ZZ,
0RB00ZX,0RB00ZZ,0RB10ZX,0RB10ZZ,0RC00ZZ,0RC10ZZ,0RG0070,0RG0071,0RG007J,0RG00A0,0RG00AJ,0R
G00J0,0RG00JJ,0RG00K0,0RG00KJ,0RG1070,0RG107J,0RG10A0,0RG10AJ,0RG10J0,0RG10JJ,0RG10K0,0RG10KJ,
0RH004Z,0RR007Z,0RR00JZ,0RR00KZ,0RR107Z,0RR10JZ,0RR10KZ,0RU007Z,0RU00ZJ,0RU00KZ,0RU107Z,0R
U10JZ,0RU10KZ,XRG0092,XRG00F3,XRG1092,XRG10F3
(Continued)

788 www.e-neurospine.org

https://doi.org/10.14245/ns.2142712.356


2. Inclusion Criteria
(1) All patients with AS and spinal fractures, (2) Spinal fractures as a primary cause of admission, age > 18 years.

3. Exclusion Criteria
Spinal fractures are not a primary cause of admission.

4. Data Extraction
The data was extracted from the NIS data based on the ICD-10 diagnostic and procedural codes. NIS data provides weighted frequencies allowing to extrapolate national estimates. The diagnostic and procedural codes used to extract AS, spinal fractures at various levels, and complications of the surgical treatment were detailed in Table 1. The data were grouped based on the fracture level (i.e., cervical, thoracic, etc.).

The patient-level comorbidities were extracted based on the Elixhauser comorbidity algorithm8 provided on the Healthcare Cost and Utilization Project website (https://www.hcup-us.ahrq.gov/nisoverview.jsp). Along with these variables, patient-level factors like race, socioeconomic characteristics, location of the patient, and hospital and patient's zip code's median income were also analyzed and described in the descriptive fashion. Complications were calculated for the patients who underwent surgical treatment.

5. Statistical Analysis
All variables were described in a standard descriptive fashion. Continuous variables are described as mean, standard deviation (SD), and median as appropriate and categorical variables as frequencies. Logistic regression analysis was used to calculate the odds ratios for the mutually exclusive levels and probability of the complications after adjusting for the SCI, Elixhauser comorbidities score and used Wald statistics to test the differences between them. Statistical significance was considered if the p-value (2-tailed) is 0.05. NIS discharge weights were used to extrapolate at the national level. All the analysis was performed using IBM SPSS Statistics ver. 27.0 (IBM Co., Armonk, NY, USA).

RESULTS

1. Clinical Characteristics
1) Overall patient cohort
A total of 5,385 patients were included. The mean age was 71.63 years (SD, 13.21), with male predominance (83.8%). The most common population is Whites (77.4%), followed by Hispanics (7.9%). The most common fracture level was thoracic level (58.3%), followed by cervical level (38%). Multiple fracture levels were found in 13.3% of the patients. SCI was associated with 15.8% of the patients. The cervical level had a higher proportion of SCI (26.5%), followed by thoracic level (9.2%). The mean Elixhauser comorbidity score was 4.82 (SD, 2.17). Complete details are listed in Table 2.

2) Socioeconomic characteristics
Overall Central counties (24.8%) and Fringe counties (24.8%) are the predominant locations of the patients. Twenty-seven point seven percent of the patients fell in the 51st to 75th percentile of the zip codes’ median household income. The most common insurance availed was Medicare (70.9%), followed by
Table 2. Demographics and discharge dispositions of the cohorts (weighted frequencies)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall (n = 5,385)</th>
<th>Cervical (n = 2,055)</th>
<th>Thoracic (n = 3,140)</th>
<th>Lumbar (n = 955)</th>
<th>Sacral (n = 120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>71.63 ± 3.21</td>
<td>69.88 ± 13.58</td>
<td>72.20 ± 12.85</td>
<td>71.30 ± 13.4</td>
<td>69.54 ± 15.75</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>83.8</td>
<td>88.6</td>
<td>83.4</td>
<td>82.2</td>
<td>45.8</td>
</tr>
<tr>
<td>Female</td>
<td>16.2</td>
<td>11.4</td>
<td>16.6</td>
<td>17.8</td>
<td>54.2</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>4,170 (77.4)</td>
<td>1,520 (74)</td>
<td>2,455 (78.2)</td>
<td>740 (77.5)</td>
<td>100 (83.3)</td>
</tr>
<tr>
<td>African Americans</td>
<td>265 (4.9)</td>
<td>145 (7.3)</td>
<td>110 (3.5)</td>
<td>65 (6.8)</td>
<td>N/A</td>
</tr>
<tr>
<td>Hispanics</td>
<td>265 (7.9)</td>
<td>185 (9.3)</td>
<td>250 (8)</td>
<td>55 (5.8)</td>
<td>10 (8.3)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>165 (3.1)</td>
<td>90 (4.4)</td>
<td>75 (2.4)</td>
<td>25 (2.6)</td>
<td>N/A</td>
</tr>
<tr>
<td>Native Americans</td>
<td>30 (0.6)</td>
<td>5 (0.2)</td>
<td>25 (0.8)</td>
<td>5 (0.5)</td>
<td>5 (4.2)</td>
</tr>
<tr>
<td>Others</td>
<td>110 (2)</td>
<td>40 (1.9)</td>
<td>65 (2.1)</td>
<td>30 (3.1)</td>
<td>N/A</td>
</tr>
<tr>
<td>Spinal cord injury</td>
<td>850 (15.8)</td>
<td>545 (26.5)</td>
<td>290 (9.2)</td>
<td>45 (4.7)</td>
<td>N/A</td>
</tr>
<tr>
<td>Elixhauser comorbidity score</td>
<td>4.82 ± 2.14</td>
<td>4.45 ± 2.05</td>
<td>5.13 ± 2.14</td>
<td>4.67 ± 2.28</td>
<td>6 ± 0</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicare</td>
<td>3,820 (70.9)</td>
<td>1,375 (66.9)</td>
<td>2,265 (72.1)</td>
<td>675 (70.7)</td>
<td>70 (58.3)</td>
</tr>
<tr>
<td>Medicaid</td>
<td>225 (4.2)</td>
<td>130 (6.3)</td>
<td>80 (2.5)</td>
<td>35 (3.7)</td>
<td>10 (8.3)</td>
</tr>
<tr>
<td>Private</td>
<td>970 (18)</td>
<td>380 (18.5)</td>
<td>580 (18.5)</td>
<td>180 (18.8)</td>
<td>35 (29.2)</td>
</tr>
<tr>
<td>Self-pay</td>
<td>100 (1.9)</td>
<td>65 (3.2)</td>
<td>35 (1.1)</td>
<td>15 (1.6)</td>
<td>5 (4.2)</td>
</tr>
<tr>
<td>No charge</td>
<td>10 (0.2)</td>
<td>10 (0.5)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Others</td>
<td>250 (4.6)</td>
<td>90 (4.4)</td>
<td>175 (5.6)</td>
<td>50 (5.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>Patient location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Central” counties of metro areas of ≥ 1 million population</td>
<td>1,335 (24.8)</td>
<td>470 (22.9)</td>
<td>785 (25)</td>
<td>270 (28.3)</td>
<td>50 (41.7)</td>
</tr>
<tr>
<td>“Fringe” counties of metro areas of ≥ 1 million population</td>
<td>1,335 (24.8)</td>
<td>520 (25.3)</td>
<td>785 (25)</td>
<td>240 (25.1)</td>
<td>30 (25)</td>
</tr>
<tr>
<td>Counties in metro areas of 250,000–999,999 population</td>
<td>1,185 (22)</td>
<td>515 (25.1)</td>
<td>635 (20.2)</td>
<td>175 (18.3)</td>
<td>15 (12.5)</td>
</tr>
<tr>
<td>Counties in metro areas of 50,000–249,999 population</td>
<td>495 (9.2)</td>
<td>205 (10)</td>
<td>275 (8.8)</td>
<td>80 (8.4)</td>
<td>10 (8.3)</td>
</tr>
<tr>
<td>Micropolitan counties</td>
<td>555 (10.3)</td>
<td>210 (10.2)</td>
<td>325 (10.4)</td>
<td>100 (10.5)</td>
<td>15 (12.5)</td>
</tr>
<tr>
<td>Not metropolitan or micropolitan counties</td>
<td>465 (8.6)</td>
<td>125 (6.1)</td>
<td>325 (10.4)</td>
<td>90 (9.4)</td>
<td>N/A</td>
</tr>
<tr>
<td>Discharge disposition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine</td>
<td>1,040 (19.3)</td>
<td>445 (21.7)</td>
<td>585 (18.6)</td>
<td>165 (17.3)</td>
<td>10 (8.3)</td>
</tr>
<tr>
<td>Transfer to short-term hospital</td>
<td>240 (4.5)</td>
<td>110 (5.4)</td>
<td>160 (5.1)</td>
<td>20 (2.1)</td>
<td>N/A</td>
</tr>
<tr>
<td>Transfer other: includes skilled nursing facility, intermediate care facility, another type of facility</td>
<td>3,115 (57.8)</td>
<td>1,065 (51.8)</td>
<td>1,860 (59.2)</td>
<td>595 (62.3)</td>
<td>95 (79.2)</td>
</tr>
<tr>
<td>Home Health Care</td>
<td>640 (11.9)</td>
<td>235 (11.4)</td>
<td>370 (11.8)</td>
<td>125 (13.1)</td>
<td>15 (12.5)</td>
</tr>
<tr>
<td>Against Medical Advice</td>
<td>10 (0.2)</td>
<td>5 (0.2)</td>
<td>5 (0.2)</td>
<td>50 (5.2)</td>
<td>N/A</td>
</tr>
<tr>
<td>Died</td>
<td>335 (6.2)</td>
<td>190 (9.2)</td>
<td>160 (5.1)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Hospital charges (US dollar)</td>
<td>162,423.63 ± 16,7112</td>
<td>184,558.78 ± 183,818</td>
<td>163,523.38 ± 161,991</td>
<td>150,966.64 ± 136,839</td>
<td>142,685.26 ± 241,209</td>
</tr>
<tr>
<td>Median household income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–25th percentile</td>
<td>1,180 (21.9)</td>
<td>470 (22.9)</td>
<td>670 (21.3)</td>
<td>225 (23.6)</td>
<td>30 (25.0)</td>
</tr>
<tr>
<td>26th–50th percentile (median)</td>
<td>1,400 (26.0)</td>
<td>580 (28.2)</td>
<td>815 (26.0)</td>
<td>260 (27.2)</td>
<td>20 (16.7)</td>
</tr>
<tr>
<td>51st–75th percentile</td>
<td>1,490 (27.7)</td>
<td>580 (28.2)</td>
<td>870 (27.7)</td>
<td>220 (23.0)</td>
<td>30 (25.0)</td>
</tr>
<tr>
<td>76th–100th percentile</td>
<td>1,215 (22.6)</td>
<td>385 (18.7)</td>
<td>730 (23.2)</td>
<td>220 (23.0)</td>
<td>40 (33.3)</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation or number (%).
NA, not available.
3) Surgical treatment and complications

A total of 2,365 patients (43.9%) underwent surgical treatment for the fractures. The most common surgery was fusion (71%), followed by corpectomy (29%). Fusion was the predominant surgery in all the groups. In the cervical level, 64.4% of the patients underwent 2 or more levels fusion. In thoracic fractures, 76.1% patients underwent 2 to 7 levels of fusion and 0.4% of the patients underwent more than 8 levels of the fusion. In lumbar fractures, 9.2% of the patients underwent 2 or more levels of fusion. The overall complication rate was 40.8% (Table 3). Respiratory complications, including pneumonia and respiratory insufficiency, were the predominant complications in the overall cohort (22.2%) as well cervical (27.7%), thoracic (21.5%), and lumbar (13%) levels (Fig. 2). Sacral fractures had lesser respiratory complications (13%). Cervical fracture patients (10.9%) required ventilatory support for more than 96 hours. The next common complication was acute kidney injury (AKI) (16.1%). Thoracic levels (18.3%) and lumbar levels (18.2%) had a higher proportion of AKI. Urinary tract infections (UTI) were found in 12.9% of the patients. Wound complications were found in 2.5% of the patients overall, with the lumbar level having the highest rate (5.2%). The cardiac complication rate was 1.7%, and the deep venous thrombosis rate was 2.3%. Sepsis was found in 5.1% of patients overall. The mean hospital stay was 11.44 days (SD, 12.57) overall. The in-hospital mortality rate was 5.7% overall, with the cervical level (7.9%) being higher than other levels. The mean hospital charges were $162,423.63 (SD, 167,112), with the cervical level having the highest charges ($184,558). Overall, the most common discharge disposition was to a skilled nursing facility or another type of facility for rehabilitation (57.8%), followed by discharge to home (19.3%).

Logistic regression analysis was used after adjusting for the Elixhauser comorbidities and SCI, predominantly affecting the complication rate (Table 4). The probability of the complications by the fracture level was computed through the odds ratio with the lumbar level as the reference. Based on the regression analysis, there was no significant difference (p = 0.45) in the complication rates based on the levels. The odds ratio of having a complication in the cervical level patients was 1.308 (95% confidence interval [CI], 0.829–2.064; p = 0.247), 1.141 (95% CI, 0.722–1.803;
Spinal Fractures in Ankylosing Spondylitis
Kandregula S, et al.

Table 4. Logistic regression analysis of factors predicting complications and in-hospital mortality

<table>
<thead>
<tr>
<th>Variable</th>
<th>Any complication</th>
<th>In-hospital mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Elixhauser comorbidity score</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Presence of spinal cord injury</td>
<td>2.164</td>
<td>1.722–2.72</td>
</tr>
<tr>
<td>Multiple levels</td>
<td>1.073</td>
<td>0.643–1.792</td>
</tr>
<tr>
<td>Cervical level</td>
<td>1.308</td>
<td>0.829–2.064</td>
</tr>
<tr>
<td>Thoracic level</td>
<td>1.141</td>
<td>0.722–1.803</td>
</tr>
<tr>
<td>Lumbar level</td>
<td>1.119</td>
<td>0.698–1.795</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval; NA, not available.

p = 0.5721) in the thoracic level, and 1.119 (95% CI, 0.698–1.795; p = 0.6395) in the lumbar level; however, none of them were statistically significant. The presence of SCI increased the odds of having a complication by 2.164 times (95% CI, 1.722–2.72; p ≤ 0.001), and a unit increase in Elixhauser comorbidity score increased the odds of having complications (p ≤ 0.001). Age (p = 0.296) and the presence of multiple fracture levels (odds ratio [OR], 1.073; 95% CI, 0.643–1.792; p = 0.786) did not predict the complication rate. In-hospital mortality was predicted only by Elixhauser comorbidity score (p ≤ 0.001) (Table 4).

DISCUSSION

Spinal fractures are a relatively rare complication of AS patients. Since AS is a relatively less common rheumatological disease, the literature describing the patterns of spinal fractures and complications of surgical management is mainly in the form of single-center studies and systematic reviews. Through the NIS database, we aim to review the treatment patterns and complications for traumatic fractures in AS patients at the national level. In our study, the majority of the patients underwent non-operative management (56.1%). Our data is not granular enough to distinguish different types of nonoperative management due to the coding bias. Our study’s most common fracture level was thoracic, followed by cervical level, although it differs with a few studies9–13 (Table 5). In the operated patients, 40.8% had at least one complication, with respiratory (22.2%) being the most common complication. The presence of the complications did
Table 5. Literature review of ankylosing spondylitis with spinal fractures

<table>
<thead>
<tr>
<th>Study</th>
<th>Total no. of patients</th>
<th>Average age (yr)</th>
<th>Patients with fractures</th>
<th>Total fracture incidents</th>
<th>Fracture location</th>
<th>Complications with rates (%)</th>
<th>Median length of stay (day)</th>
<th>Mortality rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teunissen et al.(^{10}) (2017)</td>
<td>2,089</td>
<td>69.3</td>
<td>172</td>
<td>189</td>
<td>C: 104 (60.8) T: 72 (42.1) L: 26 (15.2) S: 3 (1.8)</td>
<td>Pneumonia (50.6), respiratory failure (6.4), altered mental status (6.4), UTI (4.3), wound infection (2.1)</td>
<td>7 (3–15)</td>
<td>24.6</td>
</tr>
<tr>
<td>Longo et al.(^{11}) (2015)</td>
<td>110</td>
<td>59.2</td>
<td>86</td>
<td>110</td>
<td>C: 110 (100.0) T: 0 L: 0 S: 0</td>
<td>Epidural (2.0) hematoma, pneumonia (5.0), infection (4.0), ARDS (2.0)</td>
<td>NA</td>
<td>21.0</td>
</tr>
<tr>
<td>Rustagi et al.(^{12}) (2017)</td>
<td>-</td>
<td>63.4</td>
<td>-</td>
<td>-</td>
<td>C: 53.0 T: 41.9 L: 18.2 S: 1.5</td>
<td>Overall 84.0: (pneumonia, respiratory failure)</td>
<td>NA</td>
<td>32</td>
</tr>
<tr>
<td>Lukasiewicz et al.(^{9}) (2016)</td>
<td>939</td>
<td>68.4</td>
<td>939</td>
<td>1,076</td>
<td>C: 53.0 T: 41.9 L: 18.2 S: 1.5</td>
<td>UTI (9.6), AKI (7), pneumonia (6.3)</td>
<td>NA</td>
<td>6.6</td>
</tr>
<tr>
<td>Sedney et al.(^{17}) (2016)</td>
<td>38</td>
<td>74.0</td>
<td>38</td>
<td>38</td>
<td>T: 87.0 Multilevel: 13.0</td>
<td>Reoperation (13)</td>
<td>NA</td>
<td>13</td>
</tr>
<tr>
<td>Moussallem et al.(^{18}) (2016)</td>
<td>41</td>
<td>75.56</td>
<td>17</td>
<td>17</td>
<td>C: 0 T: 30.0 L: 65.0 S: 2.5</td>
<td>Overall 67.5 (wound infection, DVT, PE, pneumonia)</td>
<td>NA</td>
<td>5.0</td>
</tr>
<tr>
<td>Altun et al.(^{13}) (2016)</td>
<td>30</td>
<td>70.4</td>
<td>30</td>
<td>42</td>
<td>C: 60.0 T: 33.0 L: 3.0 S: 4.0</td>
<td>Pseudoarthrosis (3.3), wound infection (3.3), pneumonia (3)</td>
<td>NA</td>
<td>3.3</td>
</tr>
<tr>
<td>Robinson et al.(^{14}) (2015)</td>
<td>17,297</td>
<td>65.7</td>
<td>990</td>
<td>1131</td>
<td>C: 53.9 T: 36.5 L: 25.0 S: 6</td>
<td>Pseudoarthrosis, wound infection</td>
<td>NA</td>
<td>17</td>
</tr>
<tr>
<td>Lu et al.(^{19}) (2013)</td>
<td>28</td>
<td>54.2</td>
<td>25</td>
<td>25</td>
<td>C: 7.0 T: 52.0 L: 36.0 S: 5.0</td>
<td>Overall 66.7 (respiratory failure, empyema, osteomyelitis)</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Kouyoumdjian et al.(^{20}) (2012)</td>
<td>19</td>
<td>60.84</td>
<td>19</td>
<td>19</td>
<td>C: 100.0 T: 0 L: 0 S: 0</td>
<td>Hematoma (5.3)</td>
<td>NA</td>
<td>26</td>
</tr>
<tr>
<td>Backhaus et al.(^{11}) (2011)</td>
<td>119</td>
<td>67.0</td>
<td>119</td>
<td>129</td>
<td>C: 39.5 T: 42.6 L: 17.8 S: 0</td>
<td>Wound infection (14), Pseudoarthrosis requiring revision (15)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Caron et al.(^{5}) (2010)</td>
<td>112</td>
<td>62.4</td>
<td>112</td>
<td>122</td>
<td>C: 55.0 T: 21.0 L: 8.0 S: 0 TL Jxn: 16.0</td>
<td>UTI (35), Wound infection (16), DVT (8)</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

(Continued)
Table 5. Literature review of ankylosing spondylitis with spinal fractures (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Total no. of patients</th>
<th>Average age (yr)</th>
<th>Patients with fractures</th>
<th>Total fracture incidents</th>
<th>Fracture location</th>
<th>Complications with rates (%)</th>
<th>Median length of stay (day)</th>
<th>Mortality rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapkas et al. (2009)</td>
<td>20</td>
<td>55.4</td>
<td>20</td>
<td>20</td>
<td>C: 35.0</td>
<td>Wound infection (5), Hardware loosening (10)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kanter et al. (2008)</td>
<td>13</td>
<td>60.4</td>
<td>13</td>
<td>13</td>
<td>C: 53.8</td>
<td>Hardware failure (15), neurological decline (8)</td>
<td>NA</td>
<td>8</td>
</tr>
<tr>
<td>Thumbikat et al. (2007)</td>
<td>18</td>
<td>56.2</td>
<td>18</td>
<td>18</td>
<td>C: 78.0</td>
<td>Neurologic decline after surgery (17)</td>
<td>63–204</td>
<td>28</td>
</tr>
</tbody>
</table>

C, cervical; T, thoracic; L, lumbar; S, sacral; PE, pulmonary embolism; ARDS, acute respiratory distress syndrome; UTI, urinary tract infections; NA, not available; AKI, acute kidney injury; DVT, deep venous thrombosis.

not depend upon the fracture level rather dependent upon the Elixhauser comorbidities (p ≤ 0.001) and the presence of the SCI (OR, 2.164; 95% CI, 1.722–2.72; p ≤ 0.001). In our study, age was not a predictor of complication rate (p = 0.296).

1. Age

The mean age in our study was 71.63 years (SD, 13.21) with the range of 23 years to 90 years. Most of the studies reported a mean age of > 65 years. Our study is in agreement with these studies.5,9–12,14 As age increases, the severity of the disease increases and the chances of fall, predisposing to spinal fractures in these patients. Few single-center studies reported age as an independent predictor of mortality in AS patients with spinal fractures,5 the inherent limitations in the NIS data precludes us from doing a survival analysis. Also, in our study, the in-hospital mortality rate was not affected by age (p = 0.051).

2. Sex

Our study showed a male predominance (83.8%), in line with the results of other studies. Interestingly in the sacral fractures, there was a female predominance (54.2%). Evidence shows the HLA-B27 allele (most important allele in AS) being less often positive in women, explaining the male predominance. Another interesting genetic study in AS patients showed 1,522 unique gene expressions in males and 291 genes in women compared to controls in the general population.15 Hormones play an essential role in modulating the pain mechanisms, inflammation, and syndesmophytes development.16 Rusman et al.16 in their view, reported that although men have a higher radiological progression, the disease burden is equal.

3. Spinal Cord Injury

The rate of SCI was 15.8% in our study. SCI was associated with a higher chance of postoperative complications in our study. Westerveld et al.4 reported an SCI incidence of 67.2% in 232 AS patients. Another study by Caron et al.5 reported an incidence of 58%. In another older NIS database study, the incidence of SCI reported was 21.2%. There are significant discrepancies between the institutional cohorts and NIS data, reflecting the coding patterns and bias in the NIS sample. Also, the chance of having a delayed SCI in AS patients cannot be underestimated. Harboring an unstable fracture that was either missed in the initial evaluation or ignored by the patients as the injury is trivial can progress to a delayed SCI. Teunissen et al.10 in their study, reported a delay in diagnosis of spinal fracture in 44.2% of the patients. The delay in diagnosis was associated with SCI in 4.1% of the cases. Similarly, Caron et al.5 reported an incidence of 36.8% delayed diagnosis in their series. Hence it is recommended to evaluate for a spinal fracture in AS patients with persistent pain after minor fall/trauma even though the pain is not disabling.

4. Complication Rates

Our study showed that at least one complication was present in 40.8% of the patients who underwent surgical treatment. Respiratory complication was the most common (22.2%), followed by AKI (16.1%) and UTI (12.9%). Most of the studies showed...
significant morbidity and complications in the AS patients irrespective of the treatment. Based on these studies, the complications might be a manifestation of physiological endpoints of organ modeling in AS rather than the procedures per se (Fig. 3). The majority of people are near 70 years with a mean comorbidity score of 4.82, predisposing them to multiple postoperative complications. Our study showed ventilator dependency of more than 96 hours in 8% of the people, with cervical patients being higher (10.9%) than others. A Danish National registry reported 57.6% of AS patients have at least one or more comorbidities. Interestingly they also reported that AS with pneumonia as a cause of admission did not increase the mortality rates. Although intriguing, our study cannot be compared with this registry as they differ in population sets. Westerveld et al. reported higher complications than the control population (85.7% vs. 48.7%) in the AS patients. Lukasiewicz et al. reported that fracture location did not correlate with the adverse events in agreement with our study. However, we included only inpatient complications, which can underreport the delayed complications if post-discharge was also considered.

5. Limitations
Our study has several limitations. The lack of SCI severity grading (pre-and postinjury), mechanism of the injury, readmission data due to complications, and long-term follow-up were a few, limiting us to discuss only the early complications in the postoperative period. Along with these, the preoperative comorbidities specific to AS which can influence the postoperative outcome were not available. We reduced this bias slightly by adjusting the Elixhauser comorbidities and SCI while calculating the odds of complication by the fracture level. Again, we do not have the information on the location of the fracture in the vertebrae (Denis 3 column-wise). Also, the NIS data comes with inherent selection and sampling bias along with interrater coding bias. The details regarding the nonoperative management in the data were also lacking.

CONCLUSION
AS patients with spinal fractures have higher postoperative complications. The most common fracture location was thoracic in our study, although it differs with few studies, with SCI occurring in 1/6th of the patients. Although with significant limitations, we intend to provide a bird’s eye view of patterns, management, and complications in AS patients with spinal fractures.

CONFLICT OF INTEREST
The authors have nothing to disclose.
ACKNOWLEDGMENTS

This study was supported in part by U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health, which funds the Louisiana Clinical and Translational Science Center.

REFERENCES

Cross-Cultural Adaptation and Psychometric Validation of the Dutch Version of the Core Outcome Measures Index for the Neck in Patients Undergoing Surgery for Degenerative Disease of the Cervical Spine

Pravesh S. Gadjradj,1,2 Timothy C. Chin-See-Chong1, Daphne Donk1, Paul Depauw3, Maurits W. van Tulder4, Biswadjiet S. Harhangi5

1Department of Neurosurgery, Park MC, Rotterdam, The Netherlands
2Department of Neurological Surgery, Weill Cornell Brain and Spine Center, New York-Presbyterian Hospital, New York, NY, USA
3Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
4Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
5Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands

Objective: To perform the psychometric validation of the Dutch version of the Core Outcome Measures Index (COMI) for the neck.

Methods: A total of 178 patients, who had an indication for surgery due to degenerative cervical spinal disease, were enrolled in the study. They filled in a baseline booklet containing the Dutch version of the COMI-neck, Likert-scales for neck and arm/shoulder pain, the Neck Disability Index (NDI), the EuroQol-5 dimensions (EQ-5D) and the 12-item Short Form health survey (SF-12). Aside from analyzing construct validity using the Spearman correlation test, test-retest reliability, and responsiveness at 3 months were assessed using the intraclass correlation coefficient (ICC) and the receiver-operating characteristic (ROC) curve, respectively.

Results: The COMI-neck showed good acceptability with missing data ranging from 0% to 4.5% and some floor/ceiling effects for 3 of the domains at baseline. The COMI-summary score showed good to very good correlation with the EQSD (ρ = -0.43), the physical component summary of the SF-12 (ρ = -0.47) and the NDI (ρ = 0.73). Individual domains showed correlations of -0.28 to 0.85 with the reference questionnaires. Test-retest reliability analysis showed an ICC of 0.91 with a minimal detectable change of 1.7. Responsiveness analysis of the COMI-neck showed an area under 0.79 under the ROC-curve. The standardized response mean for a good outcome was 1.24 and for a poor outcome 0.37.

Conclusion: The current study shows that the Dutch version of the COMI-neck is a valid, reliable and responsive Patient-Reported Outcome Measure, among patients undergoing surgery for degenerative cervical spinal disorders.

Keywords: Core outcomes measures index, Dutch, Validation
INTRODUCTION

Surgery for degenerative cervical spinal disorders is frequently performed by spine surgeons.1 Similar to the variation of the surgical techniques applied by surgeon, outcomes of these procedures may also vary per surgeon or center. To monitor the quality of the care given and measure the burden of disease, outcomes of patients and procedures are increasingly being collected by clinicians.2 Aside from surgical outcomes such as complications and intraoperative blood loss, clinical outcomes of patients, are deemed to be of more importance in tracking outcomes.3

Patient-Reported Outcome Measures (PROMs) are the outcomes of choice when outcome domains as function, quality of life or pain, are assessed in patients undergoing cervical spine surgery.4 As assessing these domains through different questionnaires can be time-consuming for both patients and clinicians, there is a necessity for a brief PROM to assess these patient outcomes. With the intention to address this issue, the core outcomes measures index (COMI) was developed as a brief PROM that measures outcome on 5 domains.4,5 Separate versions of the COMI exist to assess outcomes for the lower back and neck. Previous studies have extensively studied the psychometric properties of the COMI-back and COMI-neck in different languages and showed that the COMI is a valid and reliable PROM to measure outcomes in patients with spinal disorders.6-9 A validation of the COMI-neck in the Dutch language, however, had yet to be conducted. Therefore, the purpose of the current study was to perform a psychometric validation of the COMI-neck in Dutch language among patients with degenerative cervical spinal disorders.

MATERIALS AND METHODS

1. COMI-Neck and Translation Process

The COMI-neck is a questionnaire containing 7 questions, testing 5 outcome domains.4 These domains are pain, function, symptom-specific well-being, quality of life, and disability. Aside from these domains, a summary score can be calculated in which a “0” indicates the “best score” and “10” the “worst score.” In a previous study, the COMI-back was cross-culturally adapted and validated in Dutch.10,11 For the current study, 2 researchers (1 laymen and 1 researcher in spine surgery) made adaptations to the Dutch version of the COMI-back, independently. These adaptations include changing “back” to “neck,” “leg pain/buttock pain” to “arm/shoulder pain” and “back problem” to “neck problem.” The remaining wording and structure of the COMI-back was retained. Both adapted versions were discussed by both researchers and a neurosurgeon and lead to the final version of the COMI-neck. This study was approved by the Institutional Review Board of Erasmus University Medical Center (approval number: MEC-2016-261) before the involvement of patients.

2. Patients

To validate the Dutch version of the COMI-neck, patients were included at 1 secondary and 1 tertiary referral centers for spine surgery in the Netherlands from January 2016 to January 2018. Patients were informed about the study after their consultation with the neurosurgeon and were subsequently approached by mail to be enrolled. To be included in this study, patients needed to (1) have age above 18 years or above; (2) have an indication for surgery due to cervical radiculopathy or myelopathy caused by degenerative disease; and (3) have adequate knowledge of Dutch language to complete the forms. Patients were excluded if they had (1) psychiatric disorders; (2) would undergo surgery due to infectious or oncological causes and (3) had general exclusion criteria for surgery (e.g., pregnancy, high American Society of Anesthesiologists physical status classification).

3. Study Procedures

After providing written informed consent, patients received a booklet containing the COMI-neck and other, prior validated, questionnaires. Five days after completing the baseline booklet and before undergoing surgery, a random selection of patients was approached to fill in the test-retest questionnaire. Finally, 3 months after surgery, another subset of patients were approached to fill in the responsiveness questionnaires. Besides the COMI-neck, the baseline booklet contained questions regarding demographics, Likert-scales on neck and arm pain, the Neck Disability Index (NDI), the EuroQol-5 dimensions (EQ-5D) and the 12-item Short Form health survey (SF-12). The retest and responsiveness questionnaires also contained a global treatment outcome (GTO) questionnaire in addition to the COMI-neck.

4. Outcomes

1) Demographics

Questions were included regarding baseline demographics. Data was collected on sex, marital status, age, employment, level of education, and intoxications.

https://doi.org/10.14245/ns.2142682.341
2) Likert-scale pain
Two 5-point Likert-scales were added which measured neck and arm/shoulder pain. The Likert-scales for neck pain and arm/shoulder pain were tested for correlation with the corresponding COMI-domains on neck and arm/shoulder pain.

3) Neck Disability Index
The NDI is a PROM that measures functional disability due to neck disorders. The NDI is expressed in a score ranging from "0" indicating "no disability" to "100" indicating "maximal disability." The NDI was tested for correlation with the COMI-domains function, symptom-specific well-being, disability and the summary score.

4) EuroQol-5 dimensions
The EQ5D is a five-question PROM that measures health-related quality of life. In addition to these 5 questions, a 0 to 100 visual analogue scale (VAS) is included in which patients can indicate their health status (EQ-5D-VAS). The domains symptom-specific well-being and quality of life were correlated to both EQ-5D-scores. Furthermore, the COMI-summary score was tested for correlation with the EQ-5D.

5) 12-item Short Form health survey
The SF-12 is a 12-question PROM focused on the General Health status. The SF-12 measures outcomes on 8 domains, including General Health, Bodily Pain, and Physical Functioning among others. The scores on the different domains of the SF-12 can be transformed into physical component summary (PCS) and mental component summary (MCS) scores. The domain General Health was tested for correlation with the COMI-domain quality of life, while the domain Bodily Pain was tested for correlation with the domains neck and arm/shoulder pain. The PCS was tested for correlation with the domains function, disability, and the summary score.

6) Global Treatment Outcome
The GTO was a 5-point Likert-scale in which patients could indicate recovery. The 2 items indicating “full recovery” and “almost full recovery” were dichotomized as “recovered.” The other 3 options were categorized as “not recovered.”

5. Statistical Analysis
Descriptive statistics were used to demonstrate demographics. Missing data were handled as per instructions of the respective PROMs, with no missing data allowed for the COMI-neck. To validate the Dutch version of the COMI-neck, it was tested for (1) acceptability, (2) floor/ceiling effects, (3) construct validity, (4) test-retest stability, and (5) responsiveness. Acceptability was measured by depicting the percentages of missing data. Floor/ceiling effects were indicated if > 15% of the answers were the worst (floor) or best (ceiling) scores on the COMI-summary score or any of the COMI-domains. A floor/ceiling effect > 75% was considered to be detrimental. Construct validity was calculated using the Spearman ρ correlation test. A ρ lower than 0.21 indicated no correlation, a ρ between 0.21–0.40 indicated poor correlation, a ρ between 0.41–0.61 indicated a good correlation, a ρ between 0.61–0.81 indicated a very good correlation and a ρ ≥ 0.81 indicated an excellent correlation. Test-retest stability was measured by calculating the intraclass correlation coefficient (ICC) of the COMI score at baseline and approximately 5 days later. An ICC > 0.7 in a sample of at least 50 patients, indicated acceptable reproducibility. In addition to the ICC, the standard error of measurement agreement (SEM) and minimum detectable change (MDC) were calculated. Responsiveness was tested by using a t-test comparing baseline and 3-month scores on the COMI-neck, calculating the standardized response mean (SRM) and by constructing a receiver-operating characteristic (ROC) curve anchored on the GTO. An area under the curve (AUC) of at least 0.70 on the ROC-curve was considered acceptable.

All analyses were conducted using IBM SPSS Statistics ver. 25.0 (IBM Co., Armonk, NY, USA) with a p-value of < 0.05 indicating statistical significance.

RESULTS
The Dutch version of the COMI-neck is shown in the Supplementary Material. During the study’s enrollment period, 178 patients filled in a baseline booklet. Of these patients 134 returned the COMI-neck approximately 5 days after inclusion and 86 returned the questionnaire 3-months after surgery (Fig. 1).

1. Demographics
Table 1 gives an overview of the baseline demographics of the enrolled patients. Patients had a mean age of 57.2 ± 13.4 years, a mean body mass index of 26.8 ± 5.2, and 52.8% was male. In general, majority of the patients were in a relationship (77.1%), had no (paid) job (55.6%) and followed middle education (50.2%). Furthermore, most used pain medication (59.6%), while cigarettes/tobacco, antidepressants, and muscle relaxants were used by 33.7%, 10.1%, and 8.4%, respectively. Baseline scores on the
PROMS are also shown in Table 1. Of the 178 included patients, 175 underwent surgery because 3 patients with cervical radiculopathy recovered spontaneously while awaiting surgery. Of the remaining patients, 110 (62.9%) underwent posterior decompression due to cervical myelopathy, while 65 (37.1%) underwent anterior cervical discectomy with or without fusion due to cervical radiculopathy.

2. Acceptability and Floor/Ceiling Effects

Table 2 gives an overview of the missing data at baseline and the floor/ceiling effects at baseline and 3-month follow-up. Missing data ranged from 0% to 4.5%, with 4.5% missing data for the COMI-summary score. At baseline, the COMI-domains symptom-specific well-being (70.1%), social disability (45.7%), and work disability (37.6%) had floor effects while the domain work disability showed ceiling effects (29.5%). At 3-month follow-up, floor effects were visible in the domains symptom-specific well-being (26.7%), social (24.7%) and work (27.3%) disability. Ceiling effects at 3-month follow-up were visible at all domains, except for quality of life, ranging from 17.8% to 42%. The COMI-summary score had no floor or ceiling effects at baseline or 3-month follow-up.

3. Construct Validity

The results of the correlation tests to assess construct validity are shown in Table 3. Excellent correlation was shown for the COMI-domain neck pain and the Likert-scale for neck pain ($\rho = 0.85$), while the item arm/shoulder pain showed a very good correlation with the Likert-scale for arm/shoulder pain ($\rho = 0.80$). The COMI-domain function showed good correlations with the NDI ($\rho = 0.58$) and PCS ($\rho = -0.41$), while the domain symptom-specific well-being showed a good correlation with the NDI ($\rho = 0.41$), but a poor correlation with the EQ-5D ($\rho = -0.43$). Furthermore, the domain quality of life showed a poor correlation with the EQ-5D ($\rho = -0.40$) and a good correlation with the NDI ($\rho = 0.51$). The domains social and work disability both showed a poor correlation with the PCS ($\rho = -0.39$ and $\rho = -0.33$, respectively) and a good correlation with the NDI ($\rho = 0.48$ and $\rho = 0.53$, respectively). The overall, COMI-summary score showed a very good correlation with the NDI ($\rho = 0.73$) and a good correlation with the EQ-5D ($\rho = -0.43$) and PCS.

https://doi.org/10.14245/ns.2142682.341

Table 1. Baseline demographics of the included patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>57.2 ± 13.4</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>84 (47.2)</td>
</tr>
<tr>
<td>Male</td>
<td>94 (52.8)</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
<td>26.8 ± 5.2</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
</tr>
<tr>
<td>Married/in a relationship</td>
<td>135 (77.1)</td>
</tr>
<tr>
<td>Single</td>
<td>40 (22.9)</td>
</tr>
<tr>
<td>Job status</td>
<td></td>
</tr>
<tr>
<td>Paid job</td>
<td>78 (44.4)</td>
</tr>
<tr>
<td>No (paid) job</td>
<td>98 (55.6)</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
</tr>
<tr>
<td>Lower education</td>
<td>82 (46.9)</td>
</tr>
<tr>
<td>Middle education</td>
<td>88 (50.2)</td>
</tr>
<tr>
<td>Higher education</td>
<td>5 (2.9)</td>
</tr>
<tr>
<td>Use of the following</td>
<td></td>
</tr>
<tr>
<td>Cigarettes/tobacco</td>
<td>60 (33.7)</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>18 (10.1)</td>
</tr>
<tr>
<td>Muscle relaxants</td>
<td>15 (8.4)</td>
</tr>
<tr>
<td>Pain medication</td>
<td>106 (59.6)</td>
</tr>
<tr>
<td>Patient-Reported Outcome Measure</td>
<td></td>
</tr>
<tr>
<td>Neck Disability Index</td>
<td>41.2 ± 18.1</td>
</tr>
<tr>
<td>Physical component summary</td>
<td>31.8 ± 7.1</td>
</tr>
<tr>
<td>Mental component summary</td>
<td>38.5 ± 9.9</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>0.736 ± 0.087</td>
</tr>
<tr>
<td>COMI-summary score</td>
<td>6.6 ± 2.1</td>
</tr>
<tr>
<td>Procedure undergone</td>
<td></td>
</tr>
<tr>
<td>Anterior cervical discectomy with or</td>
<td>65 (36.5)</td>
</tr>
<tr>
<td>without fusion</td>
<td></td>
</tr>
<tr>
<td>Posterior decompression</td>
<td>110 (61.7)</td>
</tr>
<tr>
<td>None (due to spontaneous recovery)</td>
<td>3 (1.7)</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation or number (%). EQ-5D, EuroQol-5 dimension; COMI, Core Outcome Measures Index.
Table 2. Floor and ceiling effects at baseline and at 3 months of follow-up

<table>
<thead>
<tr>
<th>COMI-domain</th>
<th>Range</th>
<th>Missing at baseline</th>
<th>Baseline</th>
<th>3-Month follow-up</th>
<th>Floor effects</th>
<th>Ceiling effects</th>
<th>Floor effects</th>
<th>Ceiling effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck pain</td>
<td>0–10</td>
<td>3 (1.7)</td>
<td>3 (1.7)</td>
<td>21 (12.0)</td>
<td>0 (0)</td>
<td>24 (27.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm/shoulder pain</td>
<td>0–10</td>
<td>4 (2.2)</td>
<td>4 (2.3)</td>
<td>13 (7.5)</td>
<td>0 (0)</td>
<td>27 (31.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>0–10</td>
<td>0 (0)</td>
<td>25 (14.0)</td>
<td>12 (6.7)</td>
<td>7 (7.8)</td>
<td>16 (17.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom-specific well-being</td>
<td>0–10</td>
<td>1 (0.6)</td>
<td>124 (70.1)</td>
<td>5 (2.8)</td>
<td>24 (26.7)</td>
<td>18 (20.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of life</td>
<td>0–10</td>
<td>1 (0.6)</td>
<td>16 (9.0)</td>
<td>4 (2.3)</td>
<td>1 (1.1)</td>
<td>8 (8.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social disability</td>
<td>0–10</td>
<td>3 (1.7)</td>
<td>80 (45.7)</td>
<td>21 (12.0)</td>
<td>22 (24.7)</td>
<td>24 (27.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work disability</td>
<td>0–10</td>
<td>5 (2.8)</td>
<td>65 (37.6)</td>
<td>51 (29.5)</td>
<td>24 (27.3)</td>
<td>37 (42.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary score</td>
<td>0–10</td>
<td>8 (4.5)</td>
<td>1 (0.6)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>4 (4.7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as number (%).

COMI, Core Outcome Measures Index.

Table 3. Construct validity

<table>
<thead>
<tr>
<th>COMI-domain</th>
<th>Reference questionnaire</th>
<th>Spearman ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck pain</td>
<td>Likert neck pain</td>
<td>0.85*</td>
</tr>
<tr>
<td>Arm/shoulder pain</td>
<td>Likert arm/shoulder pain</td>
<td>0.80*</td>
</tr>
<tr>
<td>Function</td>
<td>NDI</td>
<td>0.58*</td>
</tr>
<tr>
<td></td>
<td>PCS</td>
<td>-0.41*</td>
</tr>
<tr>
<td>Symptom-specific well-being</td>
<td>EQ-5D</td>
<td>-0.28*</td>
</tr>
<tr>
<td></td>
<td>NDI</td>
<td>0.41*</td>
</tr>
<tr>
<td>Quality of life</td>
<td>EQ-5D</td>
<td>-0.40*</td>
</tr>
<tr>
<td></td>
<td>NDI</td>
<td>0.51*</td>
</tr>
<tr>
<td>Social disability</td>
<td>NDI</td>
<td>0.48*</td>
</tr>
<tr>
<td></td>
<td>PCS</td>
<td>-0.39*</td>
</tr>
<tr>
<td>Work disability</td>
<td>NDI</td>
<td>0.53*</td>
</tr>
<tr>
<td></td>
<td>PCS</td>
<td>-0.33*</td>
</tr>
<tr>
<td>Summary score</td>
<td>EQ-5D</td>
<td>-0.43*</td>
</tr>
<tr>
<td></td>
<td>NDI</td>
<td>0.73*</td>
</tr>
<tr>
<td></td>
<td>PCS</td>
<td>-0.47*</td>
</tr>
</tbody>
</table>

COMI, Core Outcome Measures Index; NDI, Neck Disability Index; PCS, physical component summary; EQ-5D, EuroQol-5 dimension. *p < 0.05, statistical significance.

4. Test-Retest Reliability

The results of the test-retest reliability are shown in Table 4. All COMI-domains, except for symptom-specific well-being and quality of life, showed acceptable reproducibility with ICCs ranging from 0.78 to 0.90. The domains symptom-specific well-being and quality of life had an ICC of 0.66 and 0.65, respectively. The COMI-summary score had an ICC of 0.91 (95% confidence interval [CI], 0.86–0.94). Furthermore, the summary score had a SEM of 0.63 which leads to MDC 95% of 1.7.

5. Responsiveness

Three months after surgery, 58.3% of the patients were fully recovered according to the dichotomized GTO. Mean COMI-summary score at baseline (6.6 ± 2.1) decreased to 4.2 ± 2.7 at 3-month follow-up, leading to a mean difference of 2.29 with a standard deviation of 2.8 and thus a SRM of 0.81. The SRM for a good outcome was 1.24, while the SRM for a poor outcome was 0.37. The ROC-curve (shown in Fig. 2) had an AUC of 0.79 (95% CI, 0.69–0.89). The optimal cutoff point at the ROC-curve yielded a sensitivity of 100% and a specificity of 42%.

DISCUSSION

The current study is the first to construct a Dutch version of the COMI-neck and assess its’ psychometric properties. The Dutch version of the COMI-neck showed good acceptability with missing data for the individual domains ranging from 0% to 2.8%. As no missing data is accepted from the individual domains to produce the summary score, 4.5% was missing for the overall score. Three domains showed floor/ceiling effects at baseline, while 6 showed floor/ceiling effects at 3-month follow-up. However, no domains had detrimental floor/ceiling effects and the COMI-summary score had negligible floor/ceiling effect. Individual domains showed poor to excellent correlations with the reference questionnaires. In contrast, the COMI-summary score showed good to very good correlation with the EQ-5D, the PCS of the SF-12 and the NDI. Test-retest reliability analysis showed acceptable reliability for the COMI-summary score and all but 2 domains (symptom-specific well-being and quality of life). Responsiveness analysis of the COMI-neck
showed an acceptable ability to discriminate between a good and a poor outcome.

Previously, translations and validations of the German, Italian, Polish, Turkish and Japanese versions of the COMI-neck have been published (Table 5).6,8,9,16,17 These validations were conducted in both surgical and conservatively treated patients. All of these studies assessed floor/ceiling effects and construct validity. Test-retest reliability was previously researched in 4 versions while responsiveness was assessed in 3 previous validations.

Overall, floor/ceiling effects of the COMI-summary score were negligible at baseline and follow-up moments. Floor/ceiling effects of the domain symptom-specific well-being, is known to be present in the COMI-neck, but also at the COMI-back.8,10,17,18 The findings of the present study are in line with this. Furthermore, construct validity and test-retest reliability of the present study was also comparable to those reported in previous validations. Responsiveness analyses showed that the current study had an AUC of 0.79 and a SRM of 1.4 for a good outcome at 3-month follow-up, which is comparable to the Japanese validation which was conducted among a similar study population but at 12-month follow-up.6 The discriminative ability of these studies, however, was somewhat lower than in the German validation which assessed responsiveness at 3-month follow-up. The difference in study population might partially explain this difference as Fankhauser et al.8 studied patients who were candidates for disc replacement surgery and had a mean age of 46 years, while the study population of the current and the study of Oshima et al.6 was 11 to 18 years older and underwent surgery for mixed indications such as radiculopathy and/or myelopathy. Nevertheless, all these studies showed more than acceptable (AUC > 0.70) discriminatory abilities of the COMI-neck.

Some study limitations have to be acknowledged. Firstly, this version of the COMI-neck was formulated based on the Dutch version of the COMI-back, rather than the English version of the COMI-neck for pragmatic reasons.8,10 This was decided because it would be less-time consuming and would lead to a version the COMI-neck which would be more conform the Dutch version of the COMI-back. Furthermore, the modifications from the Dutch version of the COMI-back would only be minor and previous studies have shown that this method would also lead to valid translations.8,17 Another limitation might be that this version of the COMI-neck was only validated in a surgical population and might have other psychometric populations in conservatively treated patients. However, based on the literature and other studies validating the COMI-neck in conservatively

![Fig. 2. Receiver-operating characteristic (ROC) curve.](https://doi.org/10.14245/ns.2142682.341)

Table 4. Test-retest reliability

<table>
<thead>
<tr>
<th>COMI-domain</th>
<th>Mean ± SD</th>
<th>ICC (95% CI)</th>
<th>SEM</th>
<th>MDC 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st measurement</td>
<td>2nd measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck pain</td>
<td>4.6 ± 2.9</td>
<td>4.9 ± 2.7</td>
<td>0.89 (0.83–0.93)</td>
<td>0.96</td>
</tr>
<tr>
<td>Arm/shoulder pain</td>
<td>5.6 ± 2.7</td>
<td>6.1 ± 6.5</td>
<td>0.90 (0.84–0.94)</td>
<td>0.85</td>
</tr>
<tr>
<td>Function</td>
<td>6.2 ± 2.8</td>
<td>6.0 ± 2.8</td>
<td>0.78 (0.67–0.86)</td>
<td>1.31</td>
</tr>
<tr>
<td>Symptom-specific well-being</td>
<td>8.6 ± 2.5</td>
<td>8.4 ± 2.5</td>
<td>0.66 (0.50–0.77)</td>
<td>1.46</td>
</tr>
<tr>
<td>Quality of life</td>
<td>6.0 ± 2.2</td>
<td>5.6 ± 2.0</td>
<td>0.65 (0.49–0.76)</td>
<td>1.30</td>
</tr>
<tr>
<td>Social disability</td>
<td>7.0 ± 3.5</td>
<td>6.5 ± 3.7</td>
<td>0.84 (0.76–0.90)</td>
<td>1.40</td>
</tr>
<tr>
<td>Work disability</td>
<td>5.5 ± 4.3</td>
<td>5.8 ± 4.1</td>
<td>0.88 (0.82–0.93)</td>
<td>1.49</td>
</tr>
<tr>
<td>Summary score</td>
<td>6.6 ± 2.1</td>
<td>6.6 ± 2.5</td>
<td>0.91 (0.86–0.94)</td>
<td>0.63</td>
</tr>
</tbody>
</table>

COMI, Core Outcome Measures Index; SD, standard deviation; ICC, intraclass correlation coefficient; CI, confidence interval; SEM, standard errors of measurement agreement; MDC, minimum detectable change.
Table 5. Comparison with psychometric properties in other validated versions of the COMI-neck

<table>
<thead>
<tr>
<th>Study</th>
<th>Language</th>
<th>Studied population</th>
<th>Floor/ceiling effects summary score</th>
<th>Construct validity summary score</th>
<th>Test-retest reliability</th>
<th>MDC 95% summary score</th>
<th>Responsiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fankhauser et al., 2012</td>
<td>German</td>
<td>Patients with degenerative disease of the cervical spine with an indication for surgery (n = 89)</td>
<td>1.1% and 0 at baseline, 0 and 13.3% at follow-up</td>
<td>-0.60 (EQ-5D) 0.7 (NASS-cervical disability)</td>
<td>NR</td>
<td>NR</td>
<td>AUC (ROC) = 0.95 (0.88–0.99)</td>
</tr>
<tr>
<td>Monticone et al., 2014</td>
<td>Italian</td>
<td>Patients with chronic neck pain undergoing rehabilitation (n = 103)</td>
<td>0 at baseline and 0 at follow-up</td>
<td>NR</td>
<td>0.87 (0.81–0.91)</td>
<td>NR</td>
<td>AUC (ROC) = 0.73 (0.62–0.85)</td>
</tr>
<tr>
<td>Miekisiak et al., 2014</td>
<td>Polish</td>
<td>Patients with neck pain, with or without radiating arm/shoulder pain, with or without an indication for surgery (n = 123)</td>
<td>0.8% and 0.8% at baseline</td>
<td>0.65 (NDI)</td>
<td>0.88 (0.82–0.92)</td>
<td>1.97</td>
<td>NR</td>
</tr>
<tr>
<td>Karabicak et al., 2020</td>
<td>Turkish</td>
<td>Patients with chronic neck pain from outpatient physiotherapy and rehabilitation clinics (n = 106)</td>
<td>0 at baseline</td>
<td>0.70 (NDI) 0.65 (NPDS) 0.62 (VAS/NRS)</td>
<td>0.96 (0.94–0.97)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Oshima et al., 2021</td>
<td>Japanese</td>
<td>Patients with an indication for surgery due to cervical spinal disorders (n = 177) and volunteers with chronic neck pain (n = 59)</td>
<td>1.2% and 0.6% at baseline, 0.1% and 5.3% at follow-up</td>
<td>-0.62 (EQ-5D) 0.78 (NDI)</td>
<td>0.97 (0.96–0.98)</td>
<td>0.77</td>
<td>AUC (ROC) = 0.78 MCID 2.1</td>
</tr>
<tr>
<td>Gadjradj et al., 2021</td>
<td>Dutch</td>
<td>Patients with degenerative disease of the cervical spine with an indication for surgery (n = 178)</td>
<td>0.6% and 0 at baseline, 0 and 4.7% at follow-up</td>
<td>-0.43 (EQ-5D) 0.73 (NDI) -0.47 (PCS)</td>
<td>0.91 (0.86–0.94)</td>
<td>1.7</td>
<td>AUC (ROC) = 0.79 (0.69–0.89)</td>
</tr>
</tbody>
</table>

COMI, Core Outcome Measures Index; MDC, minimum detectable change; EQ-5D, EuroQol-5 dimension; NR, not reported; MCID, minimal clinically important difference; NPDS, Neck Pain and Disability Scale; AUC, area under the curve; ROC, receiver-operating characteristic; NASS, North American Spine Society; VAS, visual analogue scale; NRS, Numeric Rating Scale; NDI, Neck Disability Index; PCS, physical component summary.

The current study shows that the Dutch version of the COMI-neck is a valid, reliable and responsive PROM. As the COMI-neck is a brief questionnaire and has appropriate psychometric properties, it can be recommended as a PROM among Dutch patients undergoing surgery for the degenerative cervical spine.

CONFLICT OF INTEREST

The authors have nothing to disclose.

SUPPLEMENTARY MATERIAL

Supplementary Material can be found via https://doi.org/10.
REFERENCES

2. Weldring T, Smith SM. Patient-reported outcomes (PROs) and Patient-Reported Outcome Measures (PROMs). Health Serv Insights 2013;6:61-8.
Nekproblemen kunnen leiden tot nekpijn en/of pijn in de arm/schouder regio. Daarnaast kunnen er ook gevoelsstoornissen zoals tintelingen, een prikkend of een doof gevoel in deze gebieden ontstaan.

1 Van welk van de volgende problemen heeft u het meeste last? Kruis één optie aan.
 □ 1 nekpijn
 □ 2 arm/schouderpijn
 □ 3 gevoelsstoornissen in de nek/arm/schouder zoals een tintelend of doof gevoel, of een prikkend gevoel.
 □ 4 geen van bovenstaande opties

2 Voor de volgende 2 vragen (vraag 2a en vraag 2b) zouden we u willen vragen de ernst van uw pijn aan te geven door een kruisje te zetten op de schaal van 0-10 (waarbij “0” = geen pijn, “10” = de ergste pijn die u zich kunt voorstellen).
Er zijn aparte vragen voor nekpijn en voor pijn in de arm/schouder.

2a Hoe erg was uw nekpijn in de afgelopen week?

2b Hoe erg was de pijn in uw arm/schouder de afgelopen week?

3 Gedurende de afgelopen week, in welke mate stond uw nekprobleem uw normale activiteiten (zowel werk buitenshuis als in het huishouden) in de weg?
 □ 1 helemaal niet
 □ 2 een klein beetje
 □ 3 matig
 □ 4 best wel
 □ 5 uiterst
4 Als u de rest van uw leven zou moeten leven met de klachten die u nu heeft, hoe zou u zich daar dan bij voelen?

☐ 1 erg tevreden
☐ 2 enigszins tevreden
☐ 3 noch tevreden noch ontevreden
☐ 4 enigszins ontevreden
☐ 5 erg ontevreden

5 Terugkijkend op de afgelopen week, hoe zou u uw kwaliteit van leven beoordelen?

☐ 1 erg goed
☐ 2 goed
☐ 3 gematigd
☐ 4 slecht
☐ 5 erg slecht

6 Gedurende de afgelopen 4 weken, hoeveel dagen heeft u moeten minderen met de activiteiten die u doorgaans onderneemt (uw werk, het huishouden, school, ontspannende activiteiten) vanwege uw nekprobleem?

☐ geen
☐ tussen de 1 en 7 dagen
☐ tussen de 8 en 14 dagen
☐ tussen de 15 en 21 dagen
☐ meer dan 21 dagen

7 Gedurende de afgelopen 4 weken, hoeveel dagen heeft uw nekprobleem u ervan weerhouden om te gaan werken (uw werk, school, het huishouden)?

☐ geen
☐ tussen de 1 en 7 dagen
☐ tussen de 8 en 14 dagen
☐ tussen de 15 en 21 dagen
☐ meer dan 21 dagen
Risk Factors for Pulmonary Cement Embolism (PCE) After Polymethylmethacrylate Augmentation: Analysis of 32 PCE Cases

Huizhi Guo1,2, Huasheng Huang1, Yang Shao1, Qiuli Qin1, De Liang2, Shuncong Zhang2, Yongchao Tang2

1The first Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
2Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Objective: Pulmonary cement embolism (PCE) is an underestimated but potentially fatal complication after cement augmentation. Although the treatment and follow-up of PCE have been reported in the literature, the risk factors for PCE are so far less investigated. This study aims to identify the preoperative and intraoperative risk factors for the development of PCE.

Methods: A total of 1,373 patients treated with the polymethylmethacrylate (PMMA) augmentation technique were retrospectively included. Patients with PCE were divided into vertebral augmentation group and screw augmentation group. Possible risk factors were collected as follows: age, sex, bone mineral density, body mass index, diagnosis, comorbidity, surgical procedure, type of screw, augmented level, number of augmented vertebrae, fracture severity, presence of intravertebral cleft, cement volume, marked leakage in the paravertebral venous plexus, and periods of surgery. Binary logistic regression analyses were used to analyze independent risk factors for PCE.

Results: PCE was identified in 32 patients, with an incidence rate of 2.33% (32 of 1,373). For patients who had undergone vertebral augmentation, marked leakage in the paravertebral venous plexus (odds ratio [OR], 1.2; 95% confidence interval [CI], 0.1–10.3; p = 0.000) and previous surgery (OR, 16.1; 95% CI, 4.2–61.0; p = 0.007) were independent risk factors for PCE. Regarding patients who had undergone screw augmentation, the marked leakage in the paravertebral venous plexus (OR, 4.2; 95% CI, 0.5–37.3; p = 0.004) was the main risk factor.

Conclusion: Marked leakage in the paravertebral venous plexus and previous surgery were significant risk factors related to PCE. Paravertebral leakage and operator experience should be concerned when performing PMMA augmentation.

Keywords: Pulmonary embolism, Polymethylmethacrylate, Augmentation, Risk factors

INTRODUCTION

Since Galibert and Deramond first described the use of percutaneous vertebroplasty (PVP) for the treatment of symptomatic vertebral hemangioma in 1984,1 cement augmentation with polymethylmethacrylate (PMMA) has been widely used in the treatment of painful vertebral fractures and osteoporosis-related degenerative spine disorders.2 PMMA bone cement is heavily used in PVP, percutaneous kyphoplasty (PKP), and cement-augmented pedicle screw instrumentation (CAPSI) owing to the rapid and durable stability improvements of the fracture area and bone-screw interface.3,4 However, these surgical procedures also bear a high risk of cement leakage into the vertebral venous system and fracture gaps.5 The incidence of cement...
leakage is as high as 38.3%–93.6% in PVP/PKP5,6,8 and 12.5%–82.4% in CAPSI.5,6,9,11 Similarly, the same high incidence of cement leakage after CAPSI (81.68%) was also found in our inpatients.6 Cement leakage may lead to serious complications such as nerve root injury,4 spinal cord compression,5 pulmonary cement embolism (PCE),12,13 cardioembolism,14,15 anaphylactic shock,16,17 and even death.16,17 Among the abovementioned complications, PCE is one of the most severe complications.

PCE is caused by cement leakage into the vertebral venous plexus and reaches the pulmonary arteries through the azygous/hemiazigos system and cava vein. According to previous reports in the literature, PCE was detected in 1.0%–28.6% of patients by postoperative chest radiographs and/or computed tomography (CT).18-21 Although most PCE patients are asymptomatic or present mild pulmonary symptoms,22 a portion of PCE cases may develop aggravated hemodynamic repercussions or result in death.16,17 Therefore, it is important to identify the risk factors for the development of PCE.

Whereas several case reports and case series have investigated the treatment and follow-up of PCE,18,20,23-25 studies on the risk factors for PCE are lacking. To our knowledge, only 3 studies have investigated the risk factors for PCE after cement augmentation.20,26,27 This study aims to explore the risk factors for PCE and has collected the largest sample size to date.

MATERIAL AND METHODS

1. **Patient Population**

The study involving human participants were reviewed and approved by the Ethics Committee of The First Affiliated Hospital of Guangzhou University of Chinese Medicine (No. ZYY-ECK[2019]186). This study has been performed following the ethical standards in an appropriate version of the 1964 Declaration of Helsinki. Informed consent was waived by the Ethics Committee. Patients who underwent PVP, PKP, or CAPSI between January 2006 and December 2019 were reviewed. A total of 1,838 patients with osteoporotic vertebral fractures, spinal tumors, and degenerative spine diseases were initially retrieved from the hospital database. Patients without postoperative chest radiographs or chest CT were excluded. Finally, a total of 1,373 patients were included for further analyses.

The demographic and clinical information of patients was collected, including sex, age at operation, spinal bone mineral density (BMD), diagnosis, body mass index (BMI), comorbidities, date of surgery, surgical procedure, augmented level, type of screw, cement volume per level, and viscosity of bone cement. Patients with PCE were divided into vertebral augmentation group and screw augmentation group to conduct a subgroup analysis. For no obvious cement leakage occurred in vertebral augmentation level, patients who had undergone CAPSI+PVP were classified as screw augmentation group.

PMMA-based cement materials were used for all patients. Low-viscosity PMMA (Tecres S.P.A., Sommacampagna, Italy) was used in most patients. In contrast, part of patients who received vertebral augmentation was used high-viscosity PMMA (Confidence spinal cement system, Medtronic, Minneapolis, MN, USA) at the discretion of the attending surgery. In general, we injected PMMA with every 0.1-mL increment when it had a toothpaste-like viscosity (Mixing the low-viscosity bone cement for 30 seconds and waiting for 390 seconds, then the consistency of cement will change from liquid to toothpaste-like). The cement volume in the thoracic and lumbar vertebrae was about 2.5–6 mL and 3–8 mL. All vertebral augmentation procedures were performed bilaterally. According to different screw augmentation techniques, cement-augmented pedicle screws were divided into fenestrated and solid screws. The periods of surgery were classified equally into 2 periods. Because vertebral augmentation technique and screw augmentation technique were successively carried out in our department, time division of surgical periods between vertebral augmentation group (2006–2012 and 2013–2019) and screw augmentation group (2008–2013 and 2014–2019) was a little different.

2. **Radiographic Analysis**

Generally, the chest x-ray was reviewed routinely after the operation. If the patients complain of pulmonary problems, they will receive additional thoracic CT. To distinguish vascular calcification or calcified granuloma from PCE, a comparison between preoperative and postoperative chest radiographs (or chest CT scans, if possible) was performed. PCE was defined as postoperative emerging, solitary, or multiple branching linear density along the pulmonary vessel. If the distinction between vascular calcification and PCE was sometimes difficult in x-ray, a high-density branching with an attenuation greater than 500 HU in CT was judged as PCE.19 Cement embolism sites were categorized as right lung, left lung, or bilateral lungs according to the location of the PCE in postoperative imaging (x-ray or CT scan). The length of PCE was measured in anterior-posterior or lateral chest x-rays by the Picture Archiving and Communication System. According to the semiquantitative classification of Genant et al.,24 fracture severity was classified as mild-moderate (20%–40%) or severe (> 40%). The presence of an
intravertebral cleft was identified by a linear-like or irregular shape of very low density within a compressed vertebral body on CT and/or x-rays of the spine. Evaluation of fracture severity and the presence of intravertebral cleft was only performed for cases with vertebral fractures. A significant leakage in the paravertebral venous plexus was defined as a linear-shaped, high-density leakage with a minimum length of 1 cm in the anterior or lateral region of the vertebral body. All radiographic analyses were performed by 2 experienced observers independently.

3. Selection of the Control Group
In general, PCE and non-PCE cases were matched in a 1:4 ratio to provide sufficient statistical power. Non-PCE patients were selected by random sampling. The sampling strategy consisted of the following: Randomization was performed with computer-generated random numbers on the website www.randomizer.org. Depending on the sample size of vertebral augmentation group and screw augmentation group, a certain number of numbers were randomly generated to constitute the control group. This selection method made the control group consistent with non-PCE patients to the greatest possible degree.

4. Statistical Methods
Statistical analyses were performed using IBM SPSS Statistics ver. 19.0 (IBM Co., Armonk, NY, USA). Measurement data were compared by using independent-sample t-tests. For counting data, Fisher exact probability tests were used. Multivariate logistic regression analysis was further analyzed risk factors with a significant difference for multivariate analysis. A p < 0.05 was regarded to be significantly different.

RESULTS
1. Characteristics of PCE Patients
Thirty-two patients (3 males, 29 females) with PCE were identified. The overall incidence rate of PCE was 2.33% (32 of 1,373). The PCE sample had an average age of 71.52 years (range, 53–92) and an average T score of -3.75 SD (range, -6.6 to -1.3). The demographics of the PCE and non-PCE patients are shown in Table 1.

All emboli were found in subsegment pulmonary arteries classified as peripheral PCE. There were no perioperative deaths due to PCE. Most embolisms appeared in the right lung (68.75%, n = 22), with some appearing bilaterally in the lungs (31.25%, n = 10). Of the 32 patients with PCE, 5 patients (15.63%) experienced transient symptoms or hemodynamic repercussions and received symptomatic or anticoagulation therapy, and the remaining 27 patients (84.38%) did not demonstrate clinical syndromes during the perioperative period. No patient required further surgery to remove the cement emboli. After discharge, 3 patients still took aspirin or warfarin due to cardiovascular disease, while the remaining patients did not receive long-term anticoagulation therapy. Demographic and clinical information of PCE patients is presented in Table 2.

2. Risk Factor Analysis
From non-PCE patients, 88 patients who had undergone vertebral augmentation (PVP or PKP) and 40 patients who had undergone screw augmentation were randomly selected as the control group 1 and 2. For patients who had undergone vertebral augmentation, the incidence of PCE was significantly more frequent in cases with a larger number of augmented vertebrae (p < 0.05), marked leakage in the paravertebral venous plexus (p < 0.001), and previous surgery (p < 0.05) (Table 3). For patients who had undergone screw augmentation, marked leakage in the paravertebral venous plexus (p < 0.05) is a significant risk factor for PCE.
risk factor for the occurrence of PCE (Table 4). These risk factors with significant differences were further compared by a multivariate logistic regression model. For patients who had undergone vertebral augmentation, the regression analysis revealed that marked leakage in the paravertebral venous plexus (OR, 1.2; 95% CI, 0.1–10.3; p = 0.000) and previous surgery (OR, 16.1; 95% CI, 4.2–61.00; p = 0.007) were independent risk factors for PCE. Regarding patients who had undergone screw augmentation, the marked leakage in the paravertebral venous plexus (OR, 4.2; 95% CI, 0.5–37.3; p = 0.004) was the main risk
Table 3. Comparison of risk factors for the occurrence of PCE in vertebral augmentation group

<table>
<thead>
<tr>
<th>Factor</th>
<th>Vertebral augmentation group (n = 22)</th>
<th>Control group 1 (n = 88)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>73.86 ± 11.03 (56–92)</td>
<td>73.39 ± 9.80 (53–90)</td>
<td>0.846</td>
</tr>
<tr>
<td>Female sex</td>
<td>19 (86.36)</td>
<td>67 (76.14)</td>
<td>0.394</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.43 ± 3.15 (14.95–27.27)</td>
<td>21.78 ± 4.06 (14.69–37.11)</td>
<td>0.641</td>
</tr>
<tr>
<td>BMD</td>
<td>-3.85 ± 1.13 (-6.6 to -1.3)</td>
<td>-3.71 ± 1.33 (-6.2 to -0.2)</td>
<td>0.709</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td>> 0.99</td>
</tr>
<tr>
<td>OVCF</td>
<td>22 (100)</td>
<td>86 (97.27)</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>0 (0)</td>
<td>2 (2.27)</td>
<td></td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>3 (13.64)</td>
<td>10 (11.36)</td>
<td>0.721</td>
</tr>
<tr>
<td>Hypertension</td>
<td>9 (40.91)</td>
<td>30 (34.09)</td>
<td>0.621</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>2 (9.09)</td>
<td>3 (3.41)</td>
<td>0.261</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>3 (13.64)</td>
<td>8 (9.09)</td>
<td>0.458</td>
</tr>
<tr>
<td>Surgical procedure</td>
<td></td>
<td></td>
<td>0.755</td>
</tr>
<tr>
<td>PVP</td>
<td>18 (81.82)</td>
<td>74 (84.09)</td>
<td></td>
</tr>
<tr>
<td>PKP</td>
<td>4 (18.18)</td>
<td>14 (15.91)</td>
<td></td>
</tr>
<tr>
<td>No. of augmented vertebrae</td>
<td></td>
<td></td>
<td>0.041*</td>
</tr>
<tr>
<td>1 or 2</td>
<td>17 (77.27)</td>
<td>82 (93.18)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5 (22.73)</td>
<td>6 (6.82)</td>
<td></td>
</tr>
<tr>
<td>Augmented level</td>
<td></td>
<td></td>
<td>0.256</td>
</tr>
<tr>
<td>Thoracic vertebra</td>
<td>21 (60.00)</td>
<td>58 (48.74)</td>
<td></td>
</tr>
<tr>
<td>Lumbar vertebra</td>
<td>14 (40.00)</td>
<td>61 (51.26)</td>
<td></td>
</tr>
<tr>
<td>Fracture severity</td>
<td></td>
<td></td>
<td>0.327</td>
</tr>
<tr>
<td>Mild-moderate</td>
<td>24 (65.79)</td>
<td>69 (57.98)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>11 (34.21)</td>
<td>50 (42.02)</td>
<td></td>
</tr>
<tr>
<td>Presence of intravertebral cleft</td>
<td></td>
<td></td>
<td>0.068</td>
</tr>
<tr>
<td>Yes</td>
<td>1 (4.55)</td>
<td>20 (22.73)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>21 (95.45)</td>
<td>68 (77.27)</td>
<td></td>
</tr>
<tr>
<td>Viscosity of bone cement</td>
<td></td>
<td></td>
<td>0.261</td>
</tr>
<tr>
<td>Low</td>
<td>20 (90.91)</td>
<td>85 (96.59)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>2 (9.09)</td>
<td>3 (3.41)</td>
<td></td>
</tr>
<tr>
<td>Cement volume per level (mL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVP</td>
<td>4.56 ± 1.81</td>
<td>5.04 ± 1.60</td>
<td>0.376</td>
</tr>
<tr>
<td>PKP</td>
<td>4.10 ± 0.98</td>
<td>5.28 ± 1.69</td>
<td>0.199</td>
</tr>
<tr>
<td>Marked leakage in the paravertebral venous plexus</td>
<td></td>
<td></td>
<td>0.000**</td>
</tr>
<tr>
<td>Yes</td>
<td>21 (95.45)</td>
<td>19 (21.59)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1 (4.55)</td>
<td>69 (78.41)</td>
<td></td>
</tr>
<tr>
<td>Periods of surgery</td>
<td></td>
<td></td>
<td>0.003**</td>
</tr>
<tr>
<td>2006–2012</td>
<td>16 (72.73)</td>
<td>32 (36.36)</td>
<td></td>
</tr>
<tr>
<td>2013–2019</td>
<td>6 (27.27)</td>
<td>56 (63.64)</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as number (%) or mean ± standard deviation (range).
PCE, pulmonary cement embolism; BMI, body mass index; BMD, bone mineral density; OVCF, osteoporotic vertebral compression fractures; ST, spinal tumors; PVP, percutaneous vertebroplasty; PKP, percutaneous kyphoplasty.
*p < 0.05. **p < 0.01.
factor (Table 5). Representative cases of PCE patients undergoing PVP and CAPSI are shown in Figs. 1 and 2, respectively.

DISCUSSION

PCE after vertebral cement augmentation procedures was first reported in 1999 by Padovani et al.\(^{31}\) In 2011, Luetmer et al.\(^{26}\) described the largest PCE case series (n = 23) thus far. Subsequently, El Saman et al.\(^{21}\) reported the highest incidence of PCE (28.6%, 12 of 42) through routine postoperative chest imaging in 2013. The clinical importance of PCE is underestimated since previous studies showed that most cases were asymptomatic or had slight discomfort. However, a growing number of severe cases have been reported involving acute respiratory distress syndrome\(^{16,32-34}\) and even death.\(^{16,17}\) Therefore, surgeons must be aware of this potentially fatal complication following

Table 4. Comparison of risk factors for the occurrence of PCE in screw augmentation group

<table>
<thead>
<tr>
<th>Factor</th>
<th>Screw augmentation group (n = 10)</th>
<th>Control group 2 (n = 40)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>68.50 ± 11.11 (53–84)</td>
<td>68.10 ± 7.44 (53–90)</td>
<td>0.892</td>
</tr>
<tr>
<td>Female</td>
<td>10 (100)</td>
<td>35 (80.00)</td>
<td>0.569</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>22.20 ± 5.35 (14.67–30.70)</td>
<td>23.11 ± 4.22 (15.94–33.05)</td>
<td>0.531</td>
</tr>
<tr>
<td>BMD</td>
<td>-3.53 ± 0.58 (-4.3 to -2.6)</td>
<td>-3.30 ± 1.11 (-5.9 to 0)</td>
<td>0.566</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVCF+KD</td>
<td>3 (30.00)</td>
<td>10 (25.00)</td>
<td>0.707</td>
</tr>
<tr>
<td>LSS</td>
<td>3 (30.00)</td>
<td>18 (45.00)</td>
<td>0.148</td>
</tr>
<tr>
<td>LS+LSS</td>
<td>3 (30.00)</td>
<td>7 (17.50)</td>
<td>0.397</td>
</tr>
<tr>
<td>DS+LSS</td>
<td>1 (10.00)</td>
<td>5 (12.50)</td>
<td>> 0.99</td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>3 (30.00)</td>
<td>8 (20.00)</td>
<td>0.671</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3 (30.00)</td>
<td>13 (32.50)</td>
<td>> 0.99</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>0 (0.00)</td>
<td>3 (7.50)</td>
<td>> 0.99</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>1 (10.00)</td>
<td>1 (2.50)</td>
<td>0.363</td>
</tr>
<tr>
<td>Number of augmented vertebrae</td>
<td></td>
<td></td>
<td>0.474</td>
</tr>
<tr>
<td><3</td>
<td>5 (50.00)</td>
<td>26 (65.00)</td>
<td></td>
</tr>
<tr>
<td>≥3</td>
<td>5 (50.00)</td>
<td>14 (35.00)</td>
<td></td>
</tr>
<tr>
<td>Augmented level</td>
<td></td>
<td></td>
<td>0.174</td>
</tr>
<tr>
<td>Thoracolumbar spine</td>
<td>2 (20.00)</td>
<td>2 (5.00)</td>
<td></td>
</tr>
<tr>
<td>Lumbosacral spine</td>
<td>8 (80.00)</td>
<td>38 (95.00)</td>
<td></td>
</tr>
<tr>
<td>Type of screw</td>
<td></td>
<td></td>
<td>> 0.99</td>
</tr>
<tr>
<td>Fenestrated screws</td>
<td>6 (60.00)</td>
<td>23 (57.50)</td>
<td></td>
</tr>
<tr>
<td>Solid screws</td>
<td>4 (40.00)</td>
<td>17 (42.50)</td>
<td></td>
</tr>
<tr>
<td>Cement volume per level (mL)</td>
<td>3.73 ± 1.68 (1–6.3)</td>
<td>3.87 ± 1.36 (2–8)</td>
<td>0.775</td>
</tr>
<tr>
<td>Marked leakage in the paravertebral venous plexus</td>
<td>0.001**</td>
<td>0.001**</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>9 (90.00)</td>
<td>11 (27.50)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1 (10.00)</td>
<td>29 (72.50)</td>
<td></td>
</tr>
<tr>
<td>Periods of surgery</td>
<td></td>
<td></td>
<td>0.150</td>
</tr>
<tr>
<td>2008–2013</td>
<td>6 (60.00)</td>
<td>13 (17.50)</td>
<td></td>
</tr>
<tr>
<td>2014–2019</td>
<td>4 (40.00)</td>
<td>27 (82.50)</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as number (%) or mean ± standard deviation (range). PCE, pulmonary cement embolism; BMI, body mass index; BMD, bone mineral density; OVCF, osteoporotic vertebral compression fractures; KD, kyphotic deformity; LSS, Lumbar spinal stenosis; LS, lumbar spondylolisthesis; DS, degenerative scoliosis.

*\(p < 0.05\). **\(p < 0.01\).
Table 5. Multivariate logistic regression analysis of the risk factors for pulmonary cement embolism

<table>
<thead>
<tr>
<th>Factor</th>
<th>OR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebral augmentation group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of augmented vertebrae</td>
<td>68.7</td>
<td>13.4–351.4</td>
<td>0.652</td>
</tr>
<tr>
<td>Marked leakage in paravertebral venous plexus</td>
<td>1.2</td>
<td>0.1–10.3</td>
<td>0.000**</td>
</tr>
<tr>
<td>Periods of surgery</td>
<td>16.1</td>
<td>4.2–61.0</td>
<td>0.007**</td>
</tr>
<tr>
<td>Screw augmentation group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marked leakage in paravertebral venous plexus</td>
<td>4.2</td>
<td>0.5–37.3</td>
<td>0.004**</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval.
**p < 0.01.

PMMA augmentation. Identifying risk factors for PCE can help surgeons improve preoperative planning and reduce the incidence.

This study revealed that marked leakage in the paravertebral venous plexus and previous surgery had a statistically significant relationship with the development of PCE. Anatomically, the vertebral venous plexus consists of 3 interconnected veins: the internal vertebral venous plexuses, the external vertebral venous plexuses, and the basivertebral veins. The external vertebral venous plexuses were connected with the superior and inferior vena cava through intercommunication with the azygos venous system and the lumbar veins, respectively. When the vertebral venous plexus was injured by vertebral compression fracture, paracentesis procedures, or screw insertion, liquid PMMA bone cement can easily escape into the ruptured venous system. Then, through the valveless vertebral venous plexus and vena cava, the leaked cement can drain into the pulmonary circulation. Thus, paravertebral venous leakage can be recognized as an early sign of PCE. When significant leakage in the paravertebral venous plexus occurs intraoperatorically, the surgeon should alert the high risk of developing PCE and stop the injection immediately.

Factors related to paravertebral venous plexus leakage have been reported in the literature, including large-volume injection of bone cement, multilevel cement augmentation, the low viscosity of cement, early injection when bone cement is in dilute viscosity, high application pressure, the tip of screw/puncture needle adjacent to the mid-part of the vertebral body, less experienced surgeons, and inadequate fluoroscopic confirmation. Knowing these risk factors could be useful to develop preventive strategies for paravertebral venous plexus leakage and therefore decrease the incidence of PCE.

Although the period of surgery was not an independent risk factor in screw augmentation group (probably due to the small sample size), previous surgery bears a significantly higher risk of PCE than subsequent surgery. This result suggests that surgical experience and awareness about PCE have important implications for the occurrence of this complication. With the improvement of surgical techniques and the understanding of PCE, surgeons have been more careful in filling the vertebral...
Risk Factors for Pulmonary Cement Embolism

Guo H, et al.

https://doi.org/10.14245/ns.2142616.308

Fig. 2. A 73-year-old female developed postoperative pulmonary cement embolism after cement-augmented pedicle screw instrumentation at the L2–5 level (case No. 28). (A) Antero-posterior and lateral digital radiographs showed curvilinear cement in the paravertebral venous plexus (black arrow). (B) Postoperative chest x-rays showed a linear-like, hyperdense cement embolism in the right lung (red arrow). (C) The zoomed region of the red box shows cement leakage into the paravertebral venous plexus at the L5 level. In addition, a cement embolism was found in the right pulmonary vascular tree (red arrows).

Body and have paid more attention to paravertebral cement leakage. Based on the above risk factors and our experience, we recommend injecting cement with a toothpaste-like viscosity in small doses multiple times (0.1 mL–0.2 mL for each injection) and under continuous fluoroscopic monitoring. Some measures, including keeping the tip of screw/puncture needle away from the midline of the vertebral body, reduce the volume of cement, and limit the number of augmented vertebral body, could also be useful to prevent cement leakage and to contribute to reductions in the incidence of PCE.

Additional risk factors for PCE have also been reported in the literature. Kim et al. found that cement leakage into the inferior vena cava is a significant risk factor for PCE, which agrees with the present study. According to Luetmer et al. and Hsieh et al., those with PCE were significantly younger, treated with more total levels, and injected with a larger volume of cement. The author did not have a definitive explanation for age differences. Concerning more augmented levels and larger volumes of cement, it is more likely to invade the basivertebral system. Although not statistically significant, our study also reveals that more augmented vertebrae may be a risk factor for PCE. Besides, a lower frequency of PCE was noted for the presence of intravertebral clefts (p = 0.068), which may be related to the low injection pressure and avascular necrosis of the vertebral body.

The primary limitation is that some patients did not undergo postoperative chest radiography or chest CT, which may underestimate asymptomatic patients. A secondary limitation is that although operator variability and their manipulation may play a pivotal role in the development of PCE, we did not analyze the different operators or their operative habits. A final limitation is that some patients underwent PVP twice or more, so these patients were included multiple times.

CONCLUSION

PCE was not a very rare complication after PMMA augmentation. Significant leakage in paravertebral venous plexus and previous surgery were significant risk factors related to PCE. Paravertebral leakage and operator experience should be concerned when performing PMMA augmentation technique.

CONFLICT OF INTEREST

The authors have nothing to disclose.
ACKNOWLEDGMENTS

This study was funded by the innovation and strength project of The First Affiliated Hospital of Guangzhou University of Chinese Medicine (2019HIT32).

REFERENCES

Multiple-Rod Constructs Do Not Reduce Pseudarthrosis and Rod Fracture After Pedicle Subtraction Osteotomy for Adult Spinal Deformity Correction but Improve Quality of Life

Anouar Bourghli¹, Louis Boissière², David Kieser³, Daniel Larrieu⁴, Javier Pizones⁵, Ahmet Alanay⁶, Ferran Pellise⁶, Franck Kleinstück⁷, Ibrahim Obeid²; on behalf of the European Spine Study Group

¹Orthopedic and Spinal Surgery Department, Kingdom Hospital, Riyadh, Saudi Arabia
²Clinique du Dos, Elsan Jean Villar Private hospital, Bordeaux, France
³Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Dunedin, New Zealand
⁴Spine Surgery Unit, Hospital Universitario La Paz, Madrid, Spain
⁵Spine Surgery Unit, Acibadem Maslak Hospital, Istanbul, Turkey
⁶Spine Surgery Unit, Hospital Universitario Val Hebron, Barcelona, Spain
⁷Spine Center, Schulthess Klinik, Zurich, Switzerland

Objective: To compare the radiological and functional outcomes and complications of adult spinal deformity patients who underwent a pedicle subtraction osteotomy (PSO) below L2 but categorized according to their construct where either 2-rod or multiple-rod construct is applied.

Methods: Sixty-seven patients met the inclusion criteria, and were categorized into 3 groups: 2 rods (2R), multiple rods around the PSO (MRP), multiple rods around the PSO and lumbo sacral junction (MRL). Demographic data, operative parameters, spinopelvic parameters, functional outcomes, and complications were collected.

Results: Health-related quality of life scores showed a better outcome at 6 months and last follow-up visits in the MRP and MRL groups which were noted on different domains of Scoliosis Research Society-22 questionnaire, 36-item Short Form Health Surve, and Oswestry Disability Index scores (p < 0.05). The 3 groups showed similar rates of rod-related complications with no significant difference (p = 0.95). And inside each group, distribution of complications between pseudarthrosis with revision and rod fracture without revision was also similar (p = 0.99).

Conclusion: The use of multiple rods across the PSO did not show a better outcome when compared to single rods in terms of incidence and types of mechanical complications. However, better postoperative coronal alignment and health-related quality of life scores in the multiple rods group could be seen demonstrating an improved functional outcome.

Keywords: Adult spine deformity, Pedicle subtraction osteotomy, Multiple-rod construct, Rod fracture, Pseudarthrosis, Revision

INTRODUCTION

Three-column osteotomies such as pedicle subtraction osteotomy (PSO) and vertebral column resection are commonly used for the management of severe spinal deformities. The classical treatment typically used a standard 2-rod construct in order to correct the deformity and stabilize the osteotomy site, however, the important correction potential has been associat-
ed to a high instability at the level of the PSO explaining why high rates of pseudarthrosis or implant failure (rod fracture) reaching up to 30% have been previously reported in the literature.12 In addition to spinal osteotomy, other risk factors may be associated with rod fracture such as advanced age, elevated body mass index (BMI), level of the PSO, use of pelvic fixation, more severe sagittal malalignment, and large correction of sagittal parameters3 in addition to rod extreme contouring that may produce metal fatigue.4 To palliate such complications, alternatives to the classical Titanium Alloy rod material have been proposed such as the use of cobalt chrome,8 but most importantly multiple-rod construct consisting of placing supportive rods across the PSO site to enhance the stiffness and stability have been advocated.6

The objective of the current study was to compare the radiological and functional outcomes and complications between adult spinal deformity patients who underwent a PSO but categorized according to their construct where either a standard 2-rod or a multiple-rod construct is applied.

MATERIALS AND METHODS

This is a retrospective review of a prospective adult spinal deformity database collected from 5 centers. Data from consecutive cases involving patients who underwent thoracic or lumbar PSO with a minimum follow-up of 2 years were obtained, and all patients were enrolled into and Institutional Review Board-approved protocol by the respective sites. Inclusion criteria are: age of at least 18 years, presence of a spinal deformity defined by at least one of the following parameters: Cobb angle ≥ 20°, pelvic tilt (PT) ≥ 25°, sagittal vertical axis (SVA) ≥ 5 cm, or thoracic kyphosis (TK) ≥ 60°.

Mobility around the PSO site was systematically checked preoperatively (dynamic flexion and extension views, computed tomography scan) in order to ensure fusion in that area postoperatively, therefore patients had either a previously ankylosed spine due to a previous surgery, or in case of mobile levels above or below, anterior support by cages at the aforementioned levels would be systematically done or a modified PSO including the disc above would be performed.

Patients who presented a proximal junctional failure (20 from the initial cohort of 104 patients) were excluded in order to focus on the rods specifically related complications.

Multiple rods technique was defined as using in addition to the classical 2 rods, at least one accessory or satellite rod systematically spanning the PSO area or the PSO and lumbosacral junction (cobalt chrome or titanium).

Demographic data, operative parameters, spinopelvic parameters, functional outcomes, and complications were collected. And complications were distributed into 3 categories: no complications, rod fracture without revision, pseudarthrosis with revision.

Full spine standing anteroposterior and lateral radiographs were made and the different radiological parameters that were assessed preoperatively, at 6 months, and at the last follow-up after the index surgery included: SVA (distance between the C7-plumb line and posterior superior margin of S1), global tilt (GT: angle formed by the intersection of 2 lines, the 1st line is drawn from the center of C7 to the center of the sacral endplate and the 2nd line is drawn from the center of the femoral heads to the center of the sacral endplate), pelvic incidence (PI), PT, lumbar lordosis (LL), TK, and the coronal C7 plumb line (in relation to the center sacral vertical line [CSVL]). Angles were considered negative if lordotic and positive if kyphotic.

Univariate and multivariate analysis was performed on the relationship between the different rod constructs and the radiological parameters and functional scores using IBM SPSS Statistics ver. 25.0 (IBM Co., Armonk, NY, USA). Student t-test and the Mann-Whitney U-test were used to compare continuous variables. Chi-square and Fisher exact tests were performed for categorical variables. Continuous variables are expressed as mean ± standard deviation, and frequency data are expressed as counts and percentages. All p-values were 2-tailed, and p<0.05 was considered statistically significant. Multiple regression analysis was performed to identify risk factors for rods fracture.

For the subjects number, and based on statistical calculations with the use of the following formula:

\[
N = \frac{2 \times \bar{p}(1 - \bar{p}) \left(\frac{Z_\alpha}{Z} \right)^2}{(p_1 - p_2)^2}
\]

It was found that when taking into account the initial sample of patients (single rods group) with the known incidence of mechanical complications (around 23%), looking into the number of patients required to see a decrease in the complications rate in the multirods group gave the following results:

- reaching a 3% decrease with a mechanical complications rate of 20% would require 44 patients.
- reaching an 8% decrease with a mechanical complications rate of 15% would require 91 patients.
- reaching a 13% decrease with a mechanical complications rate of 10% would require 231 patients.

https://doi.org/10.14245/ns.2142596.298
RESULTS

Initial data included all PSOs performed in the thoracic and lumbar area (84 patients), however, data analysis showed no complications at all for PSOs above T9 with 85% of single rods being used in this category, in addition, PSOs performed between T10 and L2 included only 2 patients out of 10 with rod fractures with no revision at all. Therefore, and in order to properly compare single rods and multiple rods in a homogeneous sample of patients and avoid any bias, only the PSOs below L2 were included.

A total of 67 patients met the final inclusion criteria and were categorized into 3 groups: 2 rods (2R), multiple rods around the PSO (MRP), multiple rods around the PSO and lumbosacral junction (MRL).

Demographic and surgical data are presented in Table 1. Fifty-three had a prior spinal surgery and mean age at the index surgery was 60 years, with a mean follow-up period of 30 months. The mean number of fused segments was 9. Mean operative time and surgical bleeding were 307 minutes and 1,800 mL, respectively.

The different groups showed a comparable preoperative sagittal malalignment with no significant difference in the different values of GT (p = 0.69). From preoperatively to the final follow-up, significant improvements occurred in LL, TK, SVA, PT, GT, and C7-CSVL for coronal alignment (all, p < 0.05). Table 2 details the aforementioned radiological data for the whole population. Coronal alignment parameter showed a better value on the last follow-up visit for both MRP and MRL groups when compared to the 2R group with a significant difference (p = 0.03) testifying a better long-term coronal alignment. Between 6 months and 2 years, there was no significant difference in the radiological data of the 2 main groups (2R vs. MRP/MRL), however the loss of correction was less in the multiple rods group when compared to the single rod with a LL decreasing from 55.45° to 54.11° and from 53.56 to 50.15° respectively, a GT increasing from 24.57° to 25.84° and from 25.98° to 31.16° respectively and a SVA increasing from 35.71° to 37.13° and from 32.97° to 39.16°

Table 1. Demographic and surgical data of the 3 main groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>2R (n = 26)</th>
<th>MRP (n = 20)</th>
<th>MRL (n = 21)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>58.9 ± 13</td>
<td>59.8 ± 14</td>
<td>61.5 ± 9</td>
<td>0.778</td>
</tr>
<tr>
<td>Female sex</td>
<td>19 (73)</td>
<td>17 (85)</td>
<td>15 (71)</td>
<td>0.534</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.4 ± 4</td>
<td>28.1 ± 5</td>
<td>26.6 ± 4</td>
<td>0.403</td>
</tr>
<tr>
<td>Smoking history (%)</td>
<td>15 (57.6)</td>
<td>5 (25)</td>
<td>8 (38)</td>
<td>0.162</td>
</tr>
<tr>
<td>Prior lumbar fusion</td>
<td>20 (76.9)</td>
<td>16 (80)</td>
<td>17 (81)</td>
<td>0.936</td>
</tr>
<tr>
<td>Level of PSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>4 (15.4)</td>
<td>2 (10)</td>
<td>3 (14.2)</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>16 (61.5)</td>
<td>15 (75)</td>
<td>12 (57.1)</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>6 (23.1)</td>
<td>3 (15)</td>
<td>6 (28.5)</td>
<td>0.232</td>
</tr>
<tr>
<td>Interbody cage placement at PSO site</td>
<td>17 (65.3)</td>
<td>12 (60)</td>
<td>13 (62)</td>
<td>0.792</td>
</tr>
<tr>
<td>No. of instrumented vertebra</td>
<td>9.3 ± 2.1</td>
<td>10.1 ± 3.4</td>
<td>10.5 ± 3.8</td>
<td>0.632</td>
</tr>
<tr>
<td>Iliac fixation</td>
<td>21 (80.7)</td>
<td>16 (80)</td>
<td>18 (85.7)</td>
<td>0.834</td>
</tr>
<tr>
<td>No. of rods</td>
<td></td>
<td></td>
<td></td>
<td>0.413</td>
</tr>
<tr>
<td>2</td>
<td>26 (100)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>5 (25)</td>
<td>6 (28.5)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>12 (60)</td>
<td>13 (62)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>3 (15)</td>
<td>2 (9.5)</td>
<td></td>
</tr>
<tr>
<td>Estimated blood loss (L)</td>
<td>1.8 ± 1.2</td>
<td>2.0 ± 1.5</td>
<td>2.3 ± 1.2</td>
<td>0.723</td>
</tr>
<tr>
<td>Operation duration (min)</td>
<td>305 ± 64</td>
<td>322 ± 86</td>
<td>350 ± 43</td>
<td>0.526</td>
</tr>
<tr>
<td>Follow-up period (mo)</td>
<td>30 ± 6</td>
<td>31 ± 6</td>
<td>33 ± 7</td>
<td>0.651</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation or number (%).

2R, 2 rods: PSO, pedicle subtraction osteotomy; MRP, multiple rods around the PSO; MRL, multiple rods around the PSO and lumbosacral junction.
respectively.

Health-related quality of life (HRQoL) scores showed a better outcome at 6 months and last follow-up visits in the MRP and MRL groups with globally similar values when compared to the single rods group, and this outcome was noted on different domains of SRS-22, SF-36, and ODI scores (Table 3). This finding was also noted when merging both MRP and MRL groups into a single one and comparing it to the 2R group (Table 4).

Multivariate analysis did not identify specific risk factors for rods complications when comparing the different parameters in the groups. However, a higher tendency for mechanical comp-

Table 2. Pre- and postoperative radiological data of total pop-
ulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preoperative (preop)</th>
<th>Postoperative (postop)</th>
<th>p-value (preop/postop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL (°)</td>
<td>-29.22 ± 17.3</td>
<td>-54.89 ± 13.5</td>
<td>< 0.001</td>
</tr>
<tr>
<td>TK (°)</td>
<td>27.78 ± 10.6</td>
<td>44.22 ± 10.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>PI (°)</td>
<td>61.27 ± 14.5</td>
<td>59.98 ± 13.9</td>
<td>0.97</td>
</tr>
<tr>
<td>PT (°)</td>
<td>32.02 ± 10</td>
<td>20.91 ± 8.5</td>
<td>< 0.001</td>
</tr>
<tr>
<td>GT (°)</td>
<td>45.55 ± 14</td>
<td>23.19 ± 9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>SVA (mm)</td>
<td>113.86 ± 65</td>
<td>43.28 ± 32</td>
<td>0.001</td>
</tr>
<tr>
<td>C7-CVSL (mm)</td>
<td>34.68 ± 65</td>
<td>18.55 ± 14</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation.

Table 3. Health-related quality of life scores showing signif-
cicant difference between the rods groups in favor of the multi-
ple rods (2R, MRP, MRL) at 6 months and 2 years after sur-
gery

<table>
<thead>
<tr>
<th>Rods</th>
<th>No.</th>
<th>Mean ± SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M SRS-22 (function/activity)</td>
<td></td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td>2R</td>
<td>20</td>
<td>2.48 ± 0.64</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>20</td>
<td>3.19 ± 0.72</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td>20</td>
<td>3.09 ± 0.87</td>
<td></td>
</tr>
<tr>
<td>6M SRS-22 (subtotal score)</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>2R</td>
<td>20</td>
<td>2.94 ± 0.62</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>20</td>
<td>3.38 ± 0.63</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td>20</td>
<td>3.4 ± 0.67</td>
<td></td>
</tr>
<tr>
<td>6M SF-36 (role-physical)</td>
<td></td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td>2R</td>
<td>19</td>
<td>28.2 ± 6.65</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>19</td>
<td>38.76 ± 11</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td>20</td>
<td>36.5 ± 11.44</td>
<td></td>
</tr>
<tr>
<td>6M SF-36 (body pain)</td>
<td></td>
<td></td>
<td>0.044</td>
</tr>
<tr>
<td>2R</td>
<td>19</td>
<td>36.77 ± 7.45</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>20</td>
<td>44.68 ± 9.72</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td>20</td>
<td>40.93 ± 11.15</td>
<td></td>
</tr>
<tr>
<td>6M SF-36 (general health)</td>
<td></td>
<td></td>
<td>0.021</td>
</tr>
<tr>
<td>2R</td>
<td>19</td>
<td>41.07 ± 9.87</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>20</td>
<td>46.26 ± 11.8</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td>20</td>
<td>50.69 ± 9.34</td>
<td></td>
</tr>
<tr>
<td>2Y SRS-22 (subtotal score)</td>
<td></td>
<td></td>
<td>0.044</td>
</tr>
<tr>
<td>2R</td>
<td>18</td>
<td>2.99 ± 0.77</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>19</td>
<td>3.55 ± 0.67</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td>21</td>
<td>3.5 ± 0.73</td>
<td></td>
</tr>
<tr>
<td>2Y SRS-22 (total score)</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>2R</td>
<td>18</td>
<td>3.1 ± 0.75</td>
<td></td>
</tr>
<tr>
<td>MRP</td>
<td>19</td>
<td>3.63 ± 0.61</td>
<td></td>
</tr>
<tr>
<td>MRL</td>
<td>21</td>
<td>3.57 ± 0.73</td>
<td></td>
</tr>
</tbody>
</table>

2R, 2 rods: PSO, pedicle subtraction osteotomy; MRP, multiple rods around the PSO; MRL, multiple rods around the PSO and lumbo-
sacral junction; SD, standard deviation; 6M, 6 months; 2Y, 2 years; SRS-22, Scoliosis Research Society-22 questionnaire; SF-36, 36-item Short Form Health Survey.
DISCUSSION

Fixed sagittal or coronal malalignment often requires complex spinal procedures involving the use of 3-column osteotomies such as PSO. PSO technique enables satisfactory correction but at the cost of creating a high iatrogenic instability at the osteotomy site, leading to a high rate of mechanical complications such as pseudarthrosis and rod fractures. Rod fracture is the most frequent mode of hardware failure in long segment spinal fusion surgery, and it can negatively impact the clinical outcome by producing spinal pain, functional compromise, instability, and deformity correction.

Table 5. Complications of the series (2R, MRP, MRL)

<table>
<thead>
<tr>
<th>Rods</th>
<th>No complications</th>
<th>Pseudarthrosis</th>
<th>Rod fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>with revision</td>
<td>without revision</td>
</tr>
<tr>
<td>2R</td>
<td>20 (76.9)</td>
<td>3 (11.5)</td>
<td>3 (11.5)</td>
</tr>
<tr>
<td>MRP</td>
<td>16 (80.0)</td>
<td>2 (10.0)</td>
<td>2 (10.0)</td>
</tr>
<tr>
<td>MRL</td>
<td>16 (76.2)</td>
<td>2 (9.5)</td>
<td>3 (14.3)</td>
</tr>
<tr>
<td>Total</td>
<td>52 (77.6)</td>
<td>7 (10.4)</td>
<td>8 (11.9)</td>
</tr>
</tbody>
</table>

Values are presented as number (%). 2R, 2 rods: PSO, pedicle subtraction osteotomy; MRP, multiple rods around the PSO; MRL, multiple rods around the PSO and lumbosacral junction.

Table 4. Health-related quality of life scores showing significant difference between the rods groups in favor of the multiple rods (after merging the 2 multiple rods groups together) at 6 months and 2 years after surgery

<table>
<thead>
<tr>
<th>Rods</th>
<th>No.</th>
<th>Mean ± SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M ODI score (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single rods</td>
<td>20</td>
<td>43.6 ± 16.37</td>
<td>0.019</td>
</tr>
<tr>
<td>Multirods</td>
<td>40</td>
<td>31.73 ± 18.79</td>
<td></td>
</tr>
<tr>
<td>6M SRS-22 (function/activity)</td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Single rods</td>
<td>20</td>
<td>2.48 ± 0.64</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>40</td>
<td>3.14 ± 0.79</td>
<td></td>
</tr>
<tr>
<td>6M SRS-22 (subtotal score)</td>
<td></td>
<td></td>
<td>0.012</td>
</tr>
<tr>
<td>Single rods</td>
<td>20</td>
<td>2.94 ± 0.62</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>40</td>
<td>3.39 ± 0.64</td>
<td></td>
</tr>
<tr>
<td>6M SRS-22 (total score)</td>
<td></td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>Single rods</td>
<td>20</td>
<td>3.05 ± 0.59</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>40</td>
<td>3.48 ± 0.64</td>
<td></td>
</tr>
<tr>
<td>6M SF-36 (role-physical)</td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Single rods</td>
<td>19</td>
<td>28.2 ± 6.65</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>39</td>
<td>37.6 ± 11.14</td>
<td></td>
</tr>
<tr>
<td>6M SF-36 (body pain)</td>
<td></td>
<td></td>
<td>0.028</td>
</tr>
<tr>
<td>Single rods</td>
<td>19</td>
<td>36.77 ± 7.45</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>40</td>
<td>42.81 ± 10.5</td>
<td></td>
</tr>
<tr>
<td>6M SF-36 (general health)</td>
<td></td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>Single rods</td>
<td>19</td>
<td>41.07 ± 9.87</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>40</td>
<td>48.47 ± 10.74</td>
<td></td>
</tr>
<tr>
<td>2Y SRS-22 (self-image)</td>
<td></td>
<td></td>
<td>0.022</td>
</tr>
<tr>
<td>Single rods</td>
<td>25</td>
<td>2.93 ± 0.79</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>38</td>
<td>3.41 ± 0.78</td>
<td></td>
</tr>
<tr>
<td>2Y SRS-22 (mental health)</td>
<td></td>
<td></td>
<td>0.037</td>
</tr>
<tr>
<td>Single rods</td>
<td>25</td>
<td>3.06 ± 0.95</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>38</td>
<td>3.54 ± 0.83</td>
<td></td>
</tr>
<tr>
<td>2Y SRS-22 (subtotal score)</td>
<td></td>
<td></td>
<td>0.023</td>
</tr>
<tr>
<td>Single rods</td>
<td>26</td>
<td>2.87 ± 0.96</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>38</td>
<td>3.36 ± 0.72</td>
<td></td>
</tr>
<tr>
<td>2Y SRS-22 (total score)</td>
<td></td>
<td></td>
<td>0.021</td>
</tr>
<tr>
<td>Single rods</td>
<td>26</td>
<td>2.94 ± 0.95</td>
<td></td>
</tr>
<tr>
<td>Multirods</td>
<td>38</td>
<td>3.43 ± 0.69</td>
<td></td>
</tr>
</tbody>
</table>

SD, standard deviation; 6M, 6 months; 2Y, 2 years; ODI, Oswestry Disability Index; SRS-22, Scoliosis Research Society-22 questionnaire; SF-36, 36-item Short Form Health Survey.

When regrouping the patients and comparing them to the no complication group, higher BMI as a risk factor is identified (p = 0.04).

Figs. 1 and 2 illustrate cases of pseudarthrosis with revision.
In order to palliate such disadvantage, the technique evolved over the course of time and the use of multiple rods has been proposed.9 Initially, a 3-rod configuration was proposed consisting of the classical 2 rods in addition to a central satellite rod independently anchored with laminar hooks to serve as a guide for PSO closure.10 This was followed by a 4-rod instrumentation based on accessory rod connected by side-by-side domino connectors.3

The first clinical study that compared a 2-rod construct to a multiple-rod construct showed 17% of rod breakage in the 2-rod group with more than half of the concerned patients requiring revision because of symptomatic pseudarthrosis, whereas only 3% of the multiple-rod group showed partial implant failure without symptomatic pseudarthrosis avoiding the need for any revision in this group.6

A biomechanical cadaveric study investigated the effect of PSO stabilization with increasing rod numbers and implantation of adjacent cages on range of motion and primary rod strains. It showed that the supplementation of 2 rods with lateral accessory rods11 coupled to adjacent cages implantation was the most effective strategy in minimizing primary rods strains and even without cages, the strains were significantly reduced.12

In a study by Shen et al.,13 the dual rods construct consisting of 4 distinct and mechanically independent rods was defended in order to decrease the complications when compared to the use of satellite rods. Their series of 36 adult spinal deformity patients showed 8.3% of rod fractures, and none of them required revision surgery. They advocated the fact that, contrary to the dual construct where all 4 rods are directly on their own pedicle screws, the satellite rods are not, which biomechanically transfers the stress of the reconstruction either proximally or distally resulting in rod fracture above or below the satellite rods.

Another study by Gupta et al.14 provided a comparison between 2 techniques for rod placement across a PSO and suggested that their described novel 4-rod technique may help to reduce the rates of pseudarthrosis and rod failure.

In a finite element study, the effect of delta-rod configuration on the stiffness and primary rod stress reduction in multiple-rod constructs after PSO was analyzed. Avoiding to bend the third and fourth accessory rods with exact matching of the sagittal shape of the main rod enabled more better biomechanical performance in comparison to other multirods configuration minimizing the loss of fixation after initial rod breakage occurred.14

Another finite element analysis showed how adding satellite rods increases the rigidity of a construct across the PSO level reducing the stress on the primary rods, with a significant benefit in supplementing medial over lateral satellite rods.15

The current study eliminated patients who presented a proximal junctional failure from the inclusion criteria in order to focus specifically on the rods’ complications. In fact, proximal junctional kyphosis proximal junctional failure (PJK/PJF) definitely affects HRQoL, however, it was decided to exclude such complications in order to avoid any bias and specifically study rods related complications and not global complications as PJK/PJF are proximal complications to the construct that may occur with either 2 or multiple rods and are mostly related to sagittal malalignment but are not directly related to the number of rods inside the instrumentation. The current study suggests an acceptable rate of mechanical rod-related complications of 22.4% with a revision rate of 10.4% in the whole population. However, and contrary to the previous papers of the literature, the use of multiple rods across the osteotomy did not prevent pseudarthrosis and fatigue rod fracture when compared to single rods, subsequently showing a similar rate of complications between the 2 techniques.

This finding may probably be related to the fact that the majority of the patients (68%) were operated before with a previously fused spine, and also the systematic supporting of the anterior column, as suggested in the literature, either through interbody cages around the PSO or at the lumbosacral junction, or by performing a modified or extended PSO including the disc above,16,17 which probably decreased rod strains even in the 2R group. The better functional outcome is most probably due to a lesser loss of correction in the multiple rods group; deformity correction seems to be better maintained when multiple rods are used. It has been previously reported that coronal improvement is directly related to better HRQoL outcomes.18

It should be reminded that with the increased space occupation by the instrumentation, there is proportionally less space available for the placement of bone graft, which may compromise the fusion bed and arthrodesis process.

The addition of extra rods came with a lot of variations in the literature with a significant heterogeneity and lack of convention in describing the constructs as satellite, supportive, delta, outrigger, or accessory rods. This is why a new classification system has been proposed to define the different configurations of multiple rods constructs allowing for standardized communication and research or clinical practice.19 In our study, surgical technique regarding the use of multiple rods corresponded to the precited definition of using in addition to the classical 2 rods, at least one accessory or satellite rod systematically spanning the PSO area or the PSO and lumbosacral junction which
consists of connecting the accessory or satellite rod to the main rod with one proximal connector and one distal connector placed just below the S1 screw in order to protect the adjacent area. An additional detail is to avoid overloading the proximal part of the construct with multiple rods to avoid proximal overload and PJK. In the classification system for multirod constructs, satellite rods are defined as additional rods attached to anchors with or without an attachment to the main rod construct, therefore, bridging screws heads that went out of line is considered a satellite rod. Accessory rods are not attached to any anchors but to the main rod via connectors.

In a recent study by Lee et al., two groups of adult spinal deformity patients were analyzed according to the occurrence or not of a rod fracture during following-up. They showed that 42% of patients who underwent a PSO presented a rod fracture, while patients characteristics did not have an impact on the occurrence of rod fractures. Use of cobalt chrome rod, accessory rod technique, or lateral lumbar interbody fusion was shown to be effective for reducing the rate of rod fractures. In our study, it was clearly demonstrated that a higher BMI is a risk factor for rod fractures.

A recent study by Dinizo et al. evaluated specifically revision cases that were managed with 2 different posterior techniques. Comparing 2 groups of adult spinal deformity patients, their data demonstrated no difference in fusion grade, or rates of rod fracture and revisions at 2 years, after utilizing a 2 rod versus multiple-rod construct in revision surgery for pseudarthrosis. Such finding goes in pair with our results and clearly demonstrates that the optimal instrumentation configuration is still not identified. Nevertheless, our study showed that despite a similar rate of complications between the different groups, significantly better postoperative coronal alignment and HRQoL scores were noted in the multiple rods groups. This may suggest a more stable construct in the multiple rods group that is preventing secondary loss of correction in the coronal plane and improving the global function of the patient. Such findings will need further research studies in the future in order to be confirmed.

Some limitations of the current study should be acknowledged such as the limited number of patients, the limited number of complications such as pseudarthrosis which may have limited the possibility of comparing the parameters inside the complications group itself. The different types of multiples rods constructs (accessory, satellite) were not analyzed as different subtypes to identify eventual differences as it would have required a bigger number of patients.

CONCLUSION

The use of multiple rods across the PSO site did not show a better outcome when compared to single rods in terms of incidence and types of mechanical complications. However, a better postoperative coronal alignment and HRQoL scores in the multiple rods group could be seen demonstrating an improved functional outcome.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

9. Guevara-Villazon F, Boissiere L, Hayashi K, et al. Multiple-
Utility of the MISDEF2 Algorithm and Extent of Fusion in Open Adult Spinal Deformity Surgery With Minimum 2-Year Follow-up

Bo Li1,2, Gregory Hawryluk1, Praveen V. Mummaneni1, Michael Wang3, Ratnesh Mehra1, Minghao Wang1, Darryl Lau1, Rory Mayer1, Kai-Ming Fu4, Dean Chou1

1Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
2Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
3Department of Neurosurgery, University of Miami, Coral Gables, FL, USA
4Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA

Objective: Long-segment fusion in adult spinal deformity (ASD) is often needed, but more focal surgeries may provide significant relief with less morbidity. The minimally invasive spinal deformity surgery (MISDEF2) algorithm guides minimally invasive ASD surgery, but it may be useful in open ASD surgery. We classified ASD patients undergoing focal decompression, limited decompression and fusion, and full correction according to MISDEF2 and correlated outcomes.

Methods: A retrospective study of ASD patients treated by 2 surgeons at our hospital was performed. Inclusion criteria were: age > 50, minimum 2-year follow-up, and open ASD surgery. Tumor, trauma, and infections were excluded. Patients had open surgery including focal decompression, short segment fusion, or full scoliosis correction. All patients were categorized by MISDEF2 into 4 classes based upon spinopelvic parameters. Perioperative metrics were assessed. Radiographic correction, complications and reoperation were recorded.

Results: A total of 136 patients met inclusion criteria. Mean follow-up was 46 ± 15.8 months (range, 24–118 months). Forty-seven underwent full deformity correction, 71 underwent short segment fusion, and 18 underwent decompression alone. There were 24 cases of class I, 66 cases of class II, 23 cases of class III, and 23 cases of class IV patients. Patients in class I and II had perioperative complication rates of 0% and 16.7% and revision rates of 8% and 21.2% when undergoing focal decompression or limited fusion. However, class II patients undergoing full correction had higher perioperative complications rate (p = 0.03) and revision surgery rates (p = 0.047). This difference was not seen in class III patients (p > 0.05). All class IV patients underwent full correction, but they had higher perioperative complication rates (p < 0.019), comparable revision surgery rates (p = 0.27), and better radiographic realignment (p < 0.001). In addition, full deformity correction was associated with longer length of stay, increased blood loss, and longer operative time (p < 0.001).

Conclusion: The MISDEF2 algorithm may help guide ASD surgical decision making even in open surgery, with focal treatment used in class I and II patients as a viable alternative and full correction implemented in class IV patients because of severe malalignment. However, class II patients with ASD undergoing full deformity correction do have higher complication rates.

Keywords: MISDEF2, Adult spinal deformity, Adult spinal deformity, Minimally invasive surgery, Complications, Outcomes
INTRODUCTION

Adult spinal deformity (ASD) surgery usually requires long-segment fusion to address the entire pathology, but the morbidity is not trivial. Foraminal up-down compression causing radiculopathy may prompt the patient to seek surgical care because of disabling pain. Such disabling symptoms may manifest from the focal pathology (radiculopathy or listhesis), not from the chronic scoliosis. In such patients, one option may be to treat the focal pathology, especially in frail patients or in patients who do not want a multilevel fusion.¹

There is a concern that a decompression only in spinal deformity may simply worsen the deformity and result in symptom recurrence or progression.² There is also the concern that short-segment fusion fails to correct the deformity and that the remainder of the unfused curve may continue to cause symptoms.³ Both the limitations of focal surgeries and the morbidity of complete scoliosis correction capitulate the need for guidance with regard to choosing the right type of surgery for each patient.³⁻⁶ Silva and Lenke⁷ published a scheme that presented 7 types of treatment for ASD, but there was no patient cohort to validate this scheme as to its efficacy, durability, or surgical appropriateness. However, with the advent modern minimally invasive surgery (MIS), the feasibility and advantages of MIS ASD surgery began to emerge.⁸ To specifically address the role of focal surgery using MIS techniques, the minimally invasive spinal deformity (MISDEF) algorithm was published, later updated to MISDEF2 to incorporate such advanced MIS techniques as the mini-open pedicle subtraction osteotomy (PSO) and anterior column realignment/release (ACR).¹⁰⁻¹² Because the diagnosis of ASD is the same regardless of MIS or open treatment and because many surgeons now treat ASD with both open and MIS surgery, we wished to examine the applicability of the MISDEF2 algorithm in open ASD surgery.

MATERIALS AND METHODS

1. Patient Population

A retrospective study of ASD patients who underwent open surgical correction by 2 attending spine surgeons at our hospital from 2006 to 2016 was undertaken. Inclusion criteria were: minimum 2-year follow-up, age > 50 years, degenerative scoliosis (Cobb angle > 10°) with or without kyphosis, and open ASD surgical treatment with either decompression alone, decompression with fusion ≤ 3 levels, full ASD correction encompassing entire scoliosis Cobb angle or correction of sagittal imbalance. Patients who underwent decompression or decompression with fusion did not undergo deformity correction. Infection, tumor, and trauma were excluded. Patient demographics, perioperative variables, complications, and revision surgery rates were collected.

2. The MISDEF Algorithm

Mummaneni et al.⁵ proposed the MISDEF algorithm and revised version¹⁰ to provide a guideline for surgeons to choose an MIS approach for ASD surgery. The revised algorithm is based on the radiographic parameters: sagittal vertical axis (SVA), pelvic tilt (PT), pelvic incidence (PI) minus lumbar lordosis (LL) (PI–LL) mismatch, and coronal Cobb angle. Additionally, the algorithm considers whether the spine is rigid, the extent of fusion needed, and pre-existing instrumentation (Table 1). We retrospectively classified patients undergoing surgery for ASD according to MISDEF2 and correlated outcomes.

Table 1. The MISDEF2 algorithm

<table>
<thead>
<tr>
<th>Class I</th>
<th>Class II</th>
<th>Class III</th>
<th>Class VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal and coronal parameters</td>
<td>PI–LL mismatch > 10°, but < 30°</td>
<td>PI–LL mismatch > 30°</td>
<td>Fused or rigid spine and > 5 level fusion including L5–S1 or > 10 segments needing treatment or pre-existing multilevel instrumentation</td>
</tr>
<tr>
<td>SVA < 6 cm</td>
<td>SVA > 6 cm or PT > 25 or coronal Cobb > 20°</td>
<td>SVA > 6 cm or PT > 25 or coronal Cobb > 20°, thoracic kyphosis > 60° or thoracolumbar kyphosis < 10°</td>
<td></td>
</tr>
<tr>
<td>PT < 25</td>
<td>but thoracic kyphosis > 60° or thoracolumbar kyphosis < 10°</td>
<td>Thoracic kyphosis > 60° or thoracolumbar kyphosis < 10°</td>
<td></td>
</tr>
<tr>
<td>PI–LL mismatch < 10°</td>
<td>Coronal Cobb < 20°</td>
<td>Circumferential MIS with ACR, mini-open PSO, expandable cage technology, and/or hybrid-open approaches</td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>MIS surgery with decompression only or fusion of a listhetic level</td>
<td>Multilevel MIS surgery with/without decompression and interbody fusion</td>
<td>Open surgery with osteotomies+/− extension of fusion to the thoracic spine</td>
</tr>
</tbody>
</table>

SVA, sagittal vertical axis; PT, pelvic tilt; PI–LL, pelvic incidence minus lumbar lordosis; MIS, minimally invasive spinal; ACR, anterior column release; PSO, pedicle subtraction osteotomy.
3. Radiographic Measurements

Full-length 36-inch anteroposterior and lateral radiographs were obtained preoperatively and at last clinic follow-up. Radiographic analyses included measurements of SVA, LL, thoracic kyphosis (TK), thoracolumbar kyphosis (TLK), PI, sacral slope, PT, PI–LL, and pre- and postoperative Cobb angles. All patients were classified by MISDEF2 into 4 classes (class I: SVA < 6 cm, PT < 25°, PI–LL < 10°, Cobb < 20°; class II: SVA > 6 cm, PT > 25°, PI–LL > 10° < 30°, Cobb > 20°; class III: LL–PI > 30°, TK > 60°, TLK > 10°; and class IV: > 5-level fusion including...

Table 2. Comparisons of demographic, clinical and radiological parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Decompression</th>
<th>Limited fusion</th>
<th>Full correction</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at surgery (yr)</td>
<td>71.3 ± 5.5</td>
<td>66.5 ± 11</td>
<td>63.5 ± 11.0</td>
<td>0.025</td>
</tr>
<tr>
<td>Sex, male:female</td>
<td>12:6</td>
<td>35:35</td>
<td>18:29</td>
<td>0.111</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>29.6 ± 5.71</td>
<td>27.9 ± 6.4</td>
<td>28.6 ± 5.8</td>
<td>0.536</td>
</tr>
<tr>
<td>Follow-up (mo)</td>
<td>43.3 ± 14.4</td>
<td>45.2 ± 18.6</td>
<td>47.6 ± 25.7</td>
<td>0.717</td>
</tr>
<tr>
<td>Surgical duration (min)</td>
<td>169.1 ± 93</td>
<td>279.6 ± 123.9</td>
<td>423 ± 164.6</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Estimated blood loss (mL)</td>
<td>108.3 ± 67</td>
<td>301.8 ± 253.1</td>
<td>1,368.1 ± 810.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Length of hospital stay (day)</td>
<td>3.1 ± 1.8</td>
<td>4.7 ± 2.5</td>
<td>8.8 ± 3.5</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Surgical levels</td>
<td>1.6 ± 0.7</td>
<td>2.0 ± 1.1</td>
<td>8.1 ± 3</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Preoperative Cobb angle (°)</td>
<td>12.4 ± 4.1</td>
<td>12.4 ± 6.9</td>
<td>18.9 ± 8.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Postoperative Cobb angle (°)</td>
<td>8.6 ± 5.6</td>
<td>10.3 ± 7.6</td>
<td>11.6 ± 6.5</td>
<td>0.675</td>
</tr>
<tr>
<td>Cobb angle changes</td>
<td>3.8 ± 4.6</td>
<td>2.1 ± 4.5</td>
<td>8.5 ± 8.3</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation.

Fig. 1. MISDEF2 algorithm class I patient with compression alone. Preoperative coronal and sagittal parameters: sagittal vertical axis, 23 mm; Cobb angle, 14°; pelvic incidence (PI), 61°; pelvic tilt, 18°; sacral slope, 43°; lumbar lordosis (LL), -64°; PI–LL, 3°. (A) Preoperative anteroposterior (AP) radiograph. (B) Preoperative lateral radiograph. (C) Postoperative AP radiograph at 2-year follow-up. (D) Postoperative lateral radiograph at 2-year follow-up.
L5–S1 or > 10 levels) (Table 1).

4. Surgical Technique

In the decompression only group, patients underwent bilateral hemi-laminotomies with preservation of the spinous processes and interspinous ligaments. In the decompression with limited fusion, the patients underwent laminectomy and instrumented fusion at the levels of decompression. Patients who underwent full correction had multilevel instrumentation to span the entire Cobb angle.

5. Statistical Analysis

All data collection and radiographic analysis was performed either a spine fellow or an attending spine surgeon. Analysis of variance was used to detect if there was a difference among the 3 groups. The chi-square test was used to compare the differ-

Table 3. Revision surgery rates

<table>
<thead>
<tr>
<th>Class</th>
<th>Decompression</th>
<th>Limited fusion</th>
<th>Full correction</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0/4 (0)</td>
<td>2/20 (10)</td>
<td>-</td>
<td>2/24 (8)</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>2/12 (16.7)</td>
<td>4/38 (10.5)</td>
<td>8/16 (50)</td>
<td>14/66 (21.2)</td>
<td>0.047</td>
</tr>
<tr>
<td>III</td>
<td>0/2 (0)</td>
<td>1/13 (7.7)</td>
<td>2/8 (25)</td>
<td>3/23 (13)</td>
<td>0.541</td>
</tr>
<tr>
<td>IV</td>
<td>-</td>
<td>-</td>
<td>8/23 (34.8)</td>
<td>8/23 (34.8)</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>2/18 (11)</td>
<td>7/71 (9.9)</td>
<td>18/47 (38)</td>
<td>27/136 (19.9)</td>
<td>< 0.008</td>
</tr>
<tr>
<td>p-value</td>
<td>0.621</td>
<td>0.964</td>
<td>0.694</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as revision cases/total cases (%).

Fig. 2. MISDEF2 algorithm class II patient with limited fusion. This was planned as a minimally invasive spinal (MIS) procedure, but converted to open. Because the MIS equipment was ready, the MIS rods were used even though the procedure was open. Preoperative coronal and sagittal parameters: sagittal vertical axis, 20 mm; Cobb angle, 22°; pelvic incidence (PI), 44°; pelvic tilt, 15°; sacral slope, 29°; lumbar lordosis (LL), -40°; PI–LL, 4°. (A) Preoperative anteroposterior (AP) radiograph. (B) Preoperative lateral radiograph. (C) Postoperative AP radiograph at 1-year follow-up. (D) Postoperative lateral radiograph at 1-year follow-up. (E) Postoperative AP radiograph at 3-year follow-up. (F) Postoperative lateral radiograph at 3-year follow-up.
enances in complication and revision rates among the 4 MISDEF2
classes. A p < 0.05 was regarded as statistically significant. IBM
SPSS Statistics version 20.0 (IBM Corporation, Armonk, NY,
USA) was used.

RESULTS

1. Comparisons of Demographic, Clinical, and
Radiological Parameters

One hundred thirty-six patients met inclusion criteria, with
71 females and 65 males (Table 2). There were 24 cases of class
I, 66 cases of class II, 23 cases of class III, and 23 cases of class
IV patients. Forty-seven underwent full deformity correction,
71 underwent limited decompression and fusion, and 18 under-
went decompression alone. The mean age was 71.3 ± 5.5 years
(range, 55–86 years). The mean body mass index was 28.4 kg/m².
The mean follow-up was 46 ± 15.8 months (range, 24–118 mon-
ths). The average number of surgical levels was 1.6 for decom-
pression alone, 2.0 for limited fusion, and 8.1 for full correction.
The mean operative time was 169 minutes for decompression
alone, 279.6 for limited fusion, and 423 for full correction. The
mean estimated blood loss was 108.3 mL for decompression
alone, 301.8 mL for limited fusion, and 1,368.1 mL for full cor-
rection. The average length of stay was 5.9 ± 2.8 days (Table 2).
Focal decompression had 4 class I, 12 class II, 2 class III, and
0 class IV; limited fusion had 20 class I, 38 class II, 13 class III,
and 0 class IV; and full correction had 0 class I, 16 class II, 8 class
III, and 23 class IV. The mean preoperative coronal Cobb angle
was 12.4° ± 4.1° for decompression alone, 12.4° ± 6.9° for limit-
ed fusion, and 18.2° ± 9.8° for full correction. The mean post-
operative coronal Cobb angle was 8.6° ± 5.6° for decompression
alone, 10.3° ± 7.6° for limited fusion, and 11.6° ± 6.5° for full
correction. There was a statistically significant difference in the
coronal Cobb angle correction among the 3 types of surgeries
(p < 0.001) (Table 2).

2. Perioperative Complication and Revision Surgery

When analyzing by MISDEF2, patients in classes I and II had
peri-operative complication rates of 0/20 and 4/50 (8%) and re-
vision rates of 2/24 (8%), and 6/50 (12%) when they underwent
focal decompression or limited fusion (p = 0.5, p = 0.74) (Figs. 1,
2). No class I patient underwent full correction. Class II patients
undergoing full correction had higher revision surgery rates
(50%, 8 of 16) and complication rates (43.7%, 7 of 16) than pa-
tients undergoing focal decompression or limited fusion
(p = 0.047, p = 0.030) (Tables 3, 4; Fig. 3). There was no differ-

Fig. 3. MISDEF algorithm class II patient with full correction. Preoperative coronal and sagittal parameters: sagittal vertical axis,
68 mm; Cobb angle, 31°; pelvic incidence (PI), 45°; pelvic tilt, 24°; sacral slope, 21°; lumbar lordosis (LL), -25°; PI–LL, 20°. (A)
Preoperative anteroposterior (AP) radiograph. (B) Preoperative lateral radiograph. (C) Postoperative AP radiograph at 3-month
follow-up. (D) Postoperative lateral radiograph at 3-month follow-up. (E) Postoperative AP radiograph at 1-year follow-up. (F)
Postoperative lateral radiograph at 1-year follow-up proximal Junctional Kyphosis.
ence in perioperative complication and revision rates for class III patients regardless if they underwent limited fusion or full correction (p = 0.541, p = 0.431) (Tables 3, 4). All class IV patients underwent full correction (Fig. 4), and they had higher perioperative complication rates (43.5%, 10 of 23) than class I patients (0 of 24), class II patients (16.7%, 11 of 66), and class III patients (17.4%, 4 of 23) (p < 0.019) (Table 4). The revision rate of class IV patients 8 of 23 (34.8%) was not statistically different compared to class I (8%, 2 of 24), class II (21.2%, 14 of 66), and class III (13%, 3 of 23) (p = 0.27) (Table 3). Compared to focal decompression and limited fusion, full correction resulted in better coronal radiographic realignment (Cobb angle correction was 3.8° ± 4.6°, 2.1° ± 4.5°, and 8.5° ± 8.3° respectively for decompression, limited fusion and full correction) (p < 0.001) (Table 2). Full deformity correction was also associated with longer length of stay (3.1 ± 1.8, 4.7 ± 2.5, and 8.8 ± 3.5 days), more blood loss (108.3 ± 67, 301.8 ± 253.1, and 1,368.1 ± 810 mL), and longer operative times (169.1 ± 93, 279.63 ± 123.9, and 423 ± 164.6 minutes), respectively for decompression, limited fusion and full correction (all p < 0.001) (Table 2). The reasons for revision surgery and perioperative complications are listed in Tables 5 and 6.

Table 4. Perioperative complication rates

<table>
<thead>
<tr>
<th>Class</th>
<th>Decompression</th>
<th>Limited fusion</th>
<th>Full correction</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0/4 (0)</td>
<td>0/ 20 (0)</td>
<td></td>
<td>0/24 (0)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1/12 (8.3)</td>
<td>3/38 (7.9)</td>
<td>7/16 (43.7)</td>
<td>11/66 (16.7)</td>
<td>0.030</td>
</tr>
<tr>
<td>III</td>
<td>1/2 (50)</td>
<td>1/ 13 (7.7)</td>
<td>2/ 8 (25)</td>
<td>4/23 (17.4)</td>
<td>0.431</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td>10/23 (43.5)</td>
<td>10/23 (43.5)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2/18 (11)</td>
<td>4/71 (5.6)</td>
<td>14/47 (29.8)</td>
<td>25/136 (18.4)</td>
<td>< 0.009</td>
</tr>
</tbody>
</table>

p-value

| | 0.311 | 0.464 | 0.80 | < 0.019 |

Values are presented as revision cases/total cases (%).

Table 5. Revision surgery

<table>
<thead>
<tr>
<th>Reasons for revision</th>
<th>Decompression</th>
<th>Limited fusion</th>
<th>Full correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent segment degeneration</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Pseudarthrosis or implant failure</td>
<td>-</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Proximal junctional kyphosis/failure</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Persistent cerebrospinal fluid leak requiring exploration</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Iliac screw loosening/painful iliac screw</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Failure of decompression</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Screw malposition</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Flat back syndrome/sagittal imbalance</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6. Perioperative complications

<table>
<thead>
<tr>
<th>Perioperative complications</th>
<th>Decompression</th>
<th>Limited fusion</th>
<th>Full correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dural tears</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Wound Infections</td>
<td>-</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Ileus</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Epidural hematoma</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Urinary retention</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Altered mental status</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Post-operative arrhythmia</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Worsened lower extremity pain or weakness</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
DISCUSSION

The treatment of adult scoliosis can be challenging with high complication rates, complex treatment planning, and an aging, osteoporotic population. Patients with long-standing scoliosis for decades may not have disabling back pain that leads to surgery, but lateral listhesis, spondylolisthesis, or severe stenosis may drive the patient towards surgical treatment. Such patients may simply want their neurogenic and radicular symptoms eliminated with a focal fusion of the listhetic levels and not an entire scoliosis fusion. However, treating a limited portion of the scoliotic curve leaves the rest of the curve untreated and the potential for further degeneration because of partial fusion. Further, there are cases of severe sagittal or coronal imbalance, and complete realignment of the spine is really the only solution to alleviate disability. Finally, there are cases in which the scoliosis itself can be extremely painful because of a high Cobb angle that can no longer properly support the weight of the torso. In our study, we found that the treatment algorithm of MISDEF2 to open spinal deformity has potential to be relevant and applicable.

The first consideration is to ensure that surgery has a high chance of alleviating the patient’s symptoms. Performing a hemi-laminotomy or adding another fusion level on in a patient with iatrogenically fused flatback and back pain because of a forward stooped posture will most likely be a failure, leading to disappointment for both the surgeon and patient. Performing the proper operation for the patient should still be the goal of the surgery. The second consideration is to weigh the morbidity and the patient’s medical comorbidities with the risks and benefits of surgery.

Guidelines for the appropriate treatment options in adult scoliosis are few but studies have reported on the variable surgical strategies for adult scoliosis. Lee et al. reported that short fusion may be a reasonable option in patients with de novo adult degenerative lumbar scoliosis without sagittal imbalance. However, this report was a meta-analysis, not a direct comparison between the two groups. Nonetheless, their review indicated that limited fusion in balanced spines was associated with less morbidity than full fusion with similar decrease in disability in both groups. Weidenbaum reported success with decompression without fusion in adult scoliosis patients when the primary complaint was not the curve itself. However, this was a limited series without any direct comparison group. Given the very powerful methods of indirect decompression with modern interbody fusion, Chou et al. and Amara et al. have reported...
that limited fusion of the fractional curve in adult scoliosis can achieve comparable reduction of leg pain. Although there were comparable immediate results with regard to pain reduction, longer term revision surgery rates appeared to be higher in fusion of the fractional curve only. Lee et al. evaluated scoliosis curve progression in limited fusion cases compared to the natural history of scoliosis progression, and they found no difference in curve progression between the 2 groups. However, their study focused on surgery for degenerative lumbar stenosis who happened to have some component of scoliosis, not scoliosis patients per se.

The MISDEF2 algorithm guides minimally invasive ASD surgery, but it conceptually makes sense to also guide open ASD surgery since the pathology is the same, regardless of treated MIS or open. Using a modified Delphi approach, the MISDEF2 algorithm and recommends 4 treatment classes that incorporate such newer MIS approaches as the ACR and minimally invasive PSO. MISDEF2 takes into account spinopelvic parameters and Cobb angle magnitude, and it also accounts for whether the spine is rigid. Although initially designed for MIS deformity surgery, we retrospectively classified our cohort of deformity patients undergoing focal decompression, limited decompression and fusion, and full correction by the MISDEF2 algorithm to evaluate the feasibility of using the algorithm in open surgery. Consistent with the decision tree of MISDEF2, class I and II patients who underwent limited and focal surgery did not have higher revision rates than full correction patients, indicating that in fairly well-balanced spines, patients who present with isolated stenosis or listhesis may consider a focal operation instead of correction of their entire scoliosis. This may be secondary to larger surgeries in class II having higher complication rates, but focal surgeries being fairly effective, precluding revision surgery complications. In class III, however, many of these patients may have needed full correction, yet more focal surgeries resulted in complications because of inadequate correction. These findings are consistent with previous studies. Simmons and Chen et al. have reported that decompression with limited fusion without deformity correction is reasonable in patients who have moderate to severe stenosis affecting 3 or more levels, smaller curves (< 30°), no progression of deformity, and no sagittal malalignment. Glassman et al. also reported similar findings. In general, small curves (10°–20°) with limited rotation and normal sagittal balance were identified as potential candidates for decompression alone. Moderate curves (15°–40°) with segmental instability, significant rotation, or severe concave compression, may be candidates for decompression and fusion with only limited deformity correction. Larger curves (> 40°) or patients with significant coronal or sagittal imbalance generally undergo decompression, fusion, and full deformity correction. However, consistent with previously published reports, full correction surgery was associated with more length of stay, more blood loss, and more operative time (p < 0.001) (Table 2). In addition, full correction had higher perioperative complication rates than focal decompression or limited fusion (p < 0.009). However, full correction also resulted in better radiographic correction (p < 0.001).

There are limitations for this paper. First, it is a retrospective, single center study. Second, the MISDEF2 algorithm was designed for MIS deformity surgery, not open deformity surgery. Applying this algorithm to open surgery is a novel and unchartered concept. However, our application of the MISDEF2 algorithm to open cases yielded results that are consistent with the underlying principles of the MISDEF2 and consistent with previously published literature regarding focal surgeries compared to full corrective surgeries for adult scoliosis. Third, the actual surgeries that were carried out had selection bias; older, more frail patients may have undergone smaller surgeries because they simply could not have tolerated larger reconstructive procedures. This selection bias should be considered when interpreting the data. Fourth, the selection of surgery types and the MISDEF2 were retrospectively compiled; the actual selection of surgery was implemented well before the development of MISDEF2. Thus, the surgical selection was based upon surgeon judgement and patient frailty, but the application of the MISDEF2 was retrospectively applied. This could have resulted in selection bias and confounding error. However, the classification of the scoliosis itself was performed via MISDEF2, and the surgeries were analyzed only after classification. Thus, “appropriateness” of surgery was categorized after application of MISDEF2 classification, not as an actual choice of surgical technique. The strengths of this manuscript are minimum 2-year follow-up, complete evaluation of all scoliosis patients with 36-inch standing films, and data analyzing revision surgery and complication rates.

CONCLUSION

In patients who have deformities within class I and II by MISDEF2, open surgeries with decompression only and focal fusions may be viable options for surgical treatment. However, class II patients with ASD appear to have higher complication rates with full correction. Class III patients may be candidates
for limited surgery, but this should be individualized with each patient. Generally, class IV deformities should undergo full correction and realignment of the spine. The MISDEF2 algorithm—although designed for MIS deformity surgery—may also be useful for surgical decision making in open ASD surgery.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

Original Article

Corresponding Author
Seung Won Park
https://orcid.org/0000-0001-8305-7501

Department of Neurosurgery, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea
Email: nspsw@cau.ac.kr

Received: May 9, 2021
Revised: August 5, 2021
Accepted: August 28, 2021

An Anatomical Clue for Minimizing Iliac Vein Injury During the Anterolateral Approach at L5–S1 Level: A Cadaveric Study

Myeong Jin Ko, Seung Won Park, Seong Hyun Wui
Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea

Objective: The injury to the common iliac vein (CIV) seems to be the most important concern during the anterior approach to the spine at L5–S1 level. We investigated the anatomy of the L5–S1 vertebral structures related to the CIV through a cadaveric study to find an anatomical clue for safe dissection of CIV.

Methods: Ten cadavers were prepared for this study. After removing the peritoneum and the presacral fascia, the section from the lower part of the L5 to the upper part of the S1 vertebral body was removed with the CIV attached. After decalcification, 2 sections in the vertical and horizontal directions were made for histological study.

Results: An adipose tissue layer was present between the intervertebral disc and CIV. The adipose tissue layer in 6 cadavers was thin, and in 3 of these cadavers, the CIV was attached to the vertebral body and the disc. In the other 4 cadavers, the CIV was clearly separated from the vertebral body and the disc by the intervening adipose tissue layer (IATL). Under the microscope, a thin layer surrounding the anterior longitudinal ligament, periosteum, and disc was observed, and we named this structure the ‘perivertebral membrane’. The perivertebral membrane was attached to the CIV when there was no IATL, but a potential space was detected under the membrane.

Conclusion: There was a thin membrane, perivertebral membrane, between the CIV and L5–S1 disc. In cases with CIV adhesion to the disc due to the absence of IATL, the CIV may be mobilized indirectly through the perivertebral membrane.

Keywords: Lumbosacral region, Iliac Vein, Anatomy, Spine, Anterior approach

INTRODUCTION

In the surgical treatment of degenerative lumbar disease, correction of lumbar lordosis is an important factor in maintaining sagittal balance and for a better postoperative clinical course.1-4 In particular, the segmental angle of L5–S1 plays an important role in lumbar lordosis,5-7 and there are various types of fusion operations at L5–S1, including anterior lumbar interbody fusion (ALIF), transforaminal lumbar interbody fusion (TLIF), posterior lumbar interbody fusion (PLIF), and oblique lateral interbody fusion (OLIF). Among them, ALIF and OLIF allow an interbody cage with a larger size and angle to be inserted than do the TLIF and PLIF thus ALIF and OLIF are more effective in lower lumbar lordosis correction.8-10 ALIF and OLIF require mobilization of the common iliac vein (CIV) to access the disc space, and injury to the CIV is one of the major fatal complications of these surgical procedures.

Several studies have reported the occurrence of vascular complications in ALIF and OLIF (3.3% vs. 4.3%, respectively),11-14 and other papers on preoperative radiological evaluation have tried to find clues so that such vascular complications can be minimized.15-17 However, no studies suggest how to prevent complications by using the anatomical structures related to the CIV at the anterior surface of the L5–S1 disc as markers, from a spe-
pecific viewpoint of the spinal surgeon.

In this study, we investigated the anatomical relationship of the structures in front of the L5–S1 disc through a cadaveric study and tried to find an anatomical clue to reduce CIV injury during the anterior interbody fusion surgery at the L5–S1 level.

MATERIALS AND METHODS

Ten cadavers (6 males and 4 females) were prepared for this study. All cadavers were donated to the department of anatomy for educational and research purposes. All the cadavers were Korean, with no history of spinal or abdominal surgery.

1. Preparation of Cadaveric Specimens

After removing the peritoneum and the presacral fascia, a specimen containing the L5 and S1 vertebral bodies and the L5–S1 disc with the left CIV attached to the L5–S1 disc surface was obtained from each cadaver (Fig. 1). The specimens were fixed for 72 hours in 10% neutral buffered formalin and then decalcified in Kristensen’s solution for approximately 2 weeks. After decalcification, we cut the specimens into 2 different sections for the microstructural study.

1) Sagittal section

A section including the vertebral bodies of L5 and S1, L5–S1 disc, periosteum, and the anterior longitudinal ligament (ALL) to study the structural relationship of the bone, disc, and the periosteum at the transitional area between the vertebral bone and the disc.

2) Transverse section

A section including the ALL and left CIV on the left side of the L5–S1 disc to examine the relationship between the prevertebral structures and CIV.

The 2 sections were embedded in paraffin blocks and stained with hematoxylin and eosin.

Fig. 1. A cadaver specimen and its schematic diagram. After removing the peritoneum and presacral fascia, the section from the lower part of the L5 to the upper part of the S1 vertebra was removed with the common iliac vein (CIV) attached. After decalcification, 2 sections were created to evaluate the relationship among the structures. The sagittal section included the vertebral bodies of L5 and S1, L5–S1 disc, periosteum, and the anterior longitudinal ligament (ALL); the transverse section included the ALL and left CIV on the middle to left side of the L5–S1 disc.

Fig. 2. A sagittal section showing ‘perivertebral membrane.’ (A) Entire longitudinal view of perivertebral membrane (PM). This figure was composed of 15 separate but continuous photographs in a specimen. The PM was observed anterior to the L5 and S1 vertebrae and the anterior longitudinal ligament (ALL) consistently. Inset: The PM was clearly distinguished from the ALL by potential empty space (hematoxylin and eosin [H&E] stain, × 200). (B) The periosteum (PO) was located between the L5 vertebra and the ALL. It was clearly distinguished from the ALL by a narrow empty space (H&E stain, × 200). AF, annulus fibrosus; CB, cancellous bone.
RESULTS

Gross examination of the structures showed that the CIV bifurcation in each cadaver had a wide angle and the surface of the L5–S1 disc was exposed. An intervening adipose tissue layer (IATL) was present between the vertebrae and CIV and between the disc and CIV. In the 4 cadavers, the CIV was clearly separated from the vertebrae and the disc surfaces by the IATL. In 3 cadavers, the IATL was thin, and in the other 3, there was almost no IATL, therefore the CIV is attached to the vertebrae and the disc surface.

Under the microscope, a thin membranous layer covering the ALL, periosteum, and disc was observed. The thickness of the membranous layer was about 0.2 mm (range, 0.1–0.25 mm), which was 8 to 10 times thinner than the ALL, and it was composed of fibrous tissue. We named this structure as ‘perivertebral membrane’.

1. Sagittal Section

The perivertebral membrane was observed in front of the L5 and S1 vertebrae and the disc consistently (Fig. 2). The perivertebral membrane was anterior to ALL and was clearly distinguished from it by a narrow space. The fibers of the perivertebral membrane, periosteum, and ALL were arranged vertically. ALL extended over the anterior surface of the L5 vertebra and L5–S1 disc. The periosteum was located between the L5 vertebra and ALL and was separated from it by a narrow empty space. Thus, as we moved anteriorly from the body of the vertebra, the arrangement of the structures was as follows: bone, periosteum, ALL, and the perivertebral membrane. The annulus fibrosus (AF) was located behind the ALL outside of the nucleus pulposus. The AF could be distinguished from the ALL due to the different direction of its fibers.

2. Transverse Section

The perivertebral membrane was present in the outermost layer under the CIV, which covered the ALL and AF (Fig. 3). The left CIV was located above the perivertebral membrane,

Fig. 3. A transverse section at the level of L5–S1 disc. The perivertebral membrane (PM) was present in the outermost layer under the CIV, which covered the ALL and AF (Fig. 3). The left CIV was located above the perivertebral membrane,

Fig. 4. A schematic diagram of the perivertebral membrane. In case where the intervening adipose tissue layer between the left common iliac vein (CIV) and L5–S1 disc was absent, the perivertebral membrane was cut with a knife, and blunt dissection was performed to open the potential space underneath it. As such, CIV mobilization with the perivertebral membrane attached to the CIV was performed to minimize CIV injury.
and IATL was present between the CIV and the perivertebral membrane. Fig. 4 shows a schematic representation of these structures. However, in the three specimens, the CIV was attached to the perivertebral membrane when there was no IATL.

DISCUSSION

The L5–S1 segment contributes the most in the development of lumbar lordosis. Among the surgical procedures at the L5–S1 level, ALIF and OLIF are more effective in correcting lordosis than the posterior approaches (TLIF and PLIF). However, ALIF and OLIF require the mobilization of CIV during surgery, and vascular injury occurring during this procedure is one of the most devastating complications. In particular, because the left CIV is located in front of the disc and is in contact with the disc surface, it is essential to dissect and retract the left CIV when removing the disc.

Several studies report methods for the preoperative evaluation of CIV before surgery at the L5-S1 level. Chung et al. reported that CIV mobilization is easier when the perivascular adipose tissue is present under CIV. The IATL observed in our study is probably the same structure as the perivascular adipose tissue reported in this paper. According to our study, it is located between the CIV and the anterior surfaces of the vertebral body and disc rather than wrapped around the vessels; thus, it would be considered appropriate to call it IATL.

Three of the 10 cadavers had no adipose tissue layer, with adhesion between the CIV and perivertebral membrane. Chung et al. reported that the incidence rate of major left CIV injury was as high as 26.7% in the patients with iliac veins without perivascular adipose tissue. This is similar to the absence of IATL observed in our study, which may increase the risk of vascular injury during CIV mobilization. Therefore, in the patients with no adipose tissue layer, other methods of iliac vein mobilization should be devised to reduce iliac vein injury when performing ALIF or OLIF.

In particular, the recently introduced OLIF for L5–S1 is a minimally invasive technique that has an advantage similar to that reported by Chung et al.
of ALIF as it allows a cage to be inserted with a larger lordotic angle. It also has the advantage of being performed in the same posture as OLIF for L1–5. The most dangerous step during OLIF at the L5–S1 level is dissecting and retracting the left CIV laterally to the left side, and if there is adhesion between the CIV and the disc surface, a fatal vascular injury may occur. Therefore, the surgeon needs to carefully evaluate the left CIV preoperatively to determine whether there is IATL under the left CIV before performing the surgery.

According to previous studies evaluating the anterior anatomy of the lumbosacral spine, the presacral fascia is located dorsal to the peritoneum, the superior hypogastric plexus is embedded in the presacral fascia, the right and left CIV are present in the dorsal part of the presacral fascia, and there is no special structure between the CIV and the L5–S1 disc except for ALL. However, according to our study, a perivertebral membrane existed between the CIV and L5–S1 disc; based on these results, a schematic diagram was illustrated in Fig. 4.

The perivertebral membrane observed in our study might be helpful in protecting the CIV. It encircled the periphery of the ALL, periosteum, and disc, and it was separated from their surfaces by a potential space. Therefore, the perivertebral membrane could be cut and dissected from the ALL, periosteum, and disc by opening the potential space underneath this membrane. Moreover, CIV injury occurs during CIV mobilization. When the CIV was adhered to the adjacent structures (intervertebral disc, ALL, or periosteum), because of the absence of IATL, the perivertebral membrane was cut with a scalpel and blunt dissection was performed to open the potential space under the membrane. If CIV mobilization is performed indirectly through the perivertebral membrane attached to the CIV, CIV injury could be minimized. Based on these points, we had applied it to patients as well, in particular, in cases with no IATL between the CIV and disc, this method was helpful for the safe mobilization of the CIV (Fig. 5).

Most of the anatomical studies performed for the lower lumbar region have focused on the vascular structures or autonomous nerves, but there has been no study mentioning the perivertebral membrane that was observed in our study. We could not determine how far the perivertebral membrane extends to the lateral side, and the results of this study were obtained using a small number of cadavers. Therefore, further anatomic evaluation through additional large-scale studies is needed, and complementary clinical studies on whether the perivertebral membrane can be used during L5–S1 approaches should be conducted as well.

CONCLUSION

A thin membrane, the perivertebral membrane, between the CIV and disc at the L5–S1 level of the cadaveric specimens was observed. In cases with CIV adhesion to the disc surface due to the absence of IATL, we may be able to mobilize CIV safely by sharp dissection and retraction of the perivertebral membrane.

CONFLICT OF INTEREST

The authors have nothing to disclose.

ACKNOWLEDGMENTS

This research was supported by the Chung-Ang University Research Grants in 2020. The authors thank the Department of Anatomy at Chung-Ang University for helping in performing this cadaveric research.

REFERENCES

Risk Factors of Unsatisfactory Robot-Assisted Pedicle Screw Placement: A Case-Control Study

Qi Zhang1,2,*, Ming-Xing Fan1,2,*, Xiao-Guang Han1,2, Ya-Jun Liu1,2, Da He1,2, Bo Liu1,2, Wei Tian1,2

1Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China
2Beijing Key Laboratory of Robotic Orthopaedics, Beijing, China

Objective: To identify potential risk factors of unsatisfactory screw position during robot-assisted pedicle screw fixation.

Methods: A retrospective analysis of robot-assisted pedicle screw fixation performed in Beijing Jishuitan Hospital from March 2018 to March 2019 was conducted. Research data was collected from the medical record and imaging systems. Univariate tests were performed on the potential risk factors (patient's characteristics and surgical factors) of unsatisfactory screw position during robot-assisted pedicle screw fixation. For statistically significant variables in univariate tests, a logistic regression test was used to identify independent risk factors for unsatisfactory screw position.

Results: A total of 780 pedicle screws placed in 163 robot-assisted surgeries were analyzed. The rate of perfect screw positions was 93.08%, and the unsatisfactory rate was 6.92%. In patients with severe obesity (body mass index ≥ 30 kg/m²) (odds ratio [OR], 2.459; 95% confidence interval [CI], 1.199–5.044; p = 0.014), osteoporosis (T ≤ -2.5) (OR, 1.857; 95% CI, 1.046–3.295; p = 0.034), and the segments 3 levels away from the tracker (OR, 2.216; 95% CI, 1.119–4.387; p = 0.022), robot-assisted pedicle screw placement has a higher risk of screw malposition.

Conclusion: During robot-assisted pedicle screw placement for patients with severe obesity, osteoporosis, and segments 3 levels away from the tracker, vigilance should be maintained during surgery to avoid postoperative complications due to unsatisfactory screw position.

Keywords: Robot-assisted surgery, Pedicle screw, Accuracy, Risk factor

INTRODUCTION

Pedicle screw fixation has been widely used in the surgical treatment of spinal diseases. It provides strong support for the stability of the spine immediately after surgery.1,2 The accurate placement of pedicle screws is critical to the success rate of lumbar fusion. The unsatisfactory rate of traditional free-hand pedicle screw placement is up to 40%,3,5

In the past 2 decades, intraoperative navigation systems have been used in spine surgery to provide higher screw accuracy. With the development and application of robotics in spine surgery, some studies have reported the advantages of robot-assisted pedicle screw placement, including higher accuracy and safety. The research focus of robot-assisted pedicle screw fixation is to evaluate the accuracy of the screw. According to reports in the literature, the accuracy of robot-assisted pedicle screw placement is 91% to 100%.6-10 However, in most of the previous studies, robot-assisted pedicle screw fixation still could not achieve a 100% rate of perfect position. Few studies have paid attention to the factors affecting the accuracy of robot-assisted pedicle screw fixation. We need to identify some risk factors that may affect the clinical accuracy of robot-assisted pedicle screw placement.

The purpose of the study was to explore the potential risk factors...
factors of unsatisfactory screw position during robot-assisted pedicle screw fixation, including the patient’s characteristics and surgical factors.

MATERIALS AND METHODS

1. **Study Design**

 This study is a retrospective study of clinical data. The data was collected from the medical record and imaging system of our hospital. A total of 163 robot-assisted thoracolumbar pedicle screw fixation procedures were performed from March 2018 to March 2019. The study was approved by the Institutional Review Board of Beijing Jishuitan Hospital (20190913).

 The inclusion criteria were as follows: (1) diagnosis of lumbar disc herniation, lumbar spinal stenosis, lumbar spondylolisthesis, or thoracolumbar fracture; (2) completion of preoperative and postoperative computed tomography (CT) examinations; (3) surgery was performed using the TiRobot orthopaedic robot (TINAVI Medical Technologies, Beijing, China).

 The exclusion criteria were as follows: (1) revision surgery; (2) diagnosis of scoliosis, spinal tumor, or spinal tuberculosis; (3) severe sagittal or coronal spinal deformity.

2. **Surgical Methods**

 Robot-assisted procedures were performed according to the guideline for thoracolumbar pedicle screw placement assisted by orthopaedic surgical robot. The patient tracker was placed in the spinal process one segment cranial to the surgical site. Intraoperative CT images were acquired for screw trajectory planning. K-wire was inserted through the cannula on the robotic arm under real-time adjustment. The deviation of TiRobot between the planned and real trajectories was less than 1 mm. It was up to the surgeon to choose percutaneous or open screw placement.

3. **Group Allocation**

 Screw positions were evaluated in the postoperative CT multiplanar reconstruction images. One spine surgeon and 1 radiologist who were blind to this study independently assessed the accuracy of the pedicle screws. A third senior doctor was involved for adjudication in case of disagreement (7.3%).

 Pedicle screw accuracy was evaluated according to the Gertzbein and Robbins scale. Grade A, completely within the pedicle; grade B, pedicle cortical breach < 2 mm; grade C, pedicle cortical breach ≥ 2 mm and < 4 mm; grade D, pedicle cortical breach ≥ 4 mm and < 6 mm; grade E, pedicle cortical breach ≥ 6 mm.

 According to the accuracy of the screw position, the screws were divided into groups. Group A was a group with perfect screw positions (grade A). Group B was a group with unsatisfactory screw positions (grades B, C, D, and E).

4. **Risk Factors**

 Potential risk factors of unsatisfactory screw position were assessed, including (1) Age: ≥ 60 years old, < 60 years old. (2) Sex: male; female. (3) Body mass index (BMI): BMI < 25 kg/m² is defined as nonobese; 25 kg/m² ≤ BMI < 30 kg/m² is defined as obesity; BMI ≥ 30 kg/m² is defined as severe obesity. (4) Bone density (quantitative CT of lumbar vertebral cancellous bone): T value > -2.5 is defined as nonosteoporosis; T value ≤ -2.5 is defined as osteoporosis. (5) Preoperative diagnosis: lumbar spondylolisthesis; lumbar disc herniation; lumbar spinal stenosis; thoracolumbar fracture. (6) Instrumented segment: thoracolumbar region (T10–L2); lumbo-sacral region (L3–S1). (7) Screw side: left; right. (8) Distance between the instrumented level and the tracker (gap distance): 1 level; 2 levels; 3 levels or more. (9) Surgical approach: percutaneous; open. (10) Surgeons: 1st group; 2nd group; 3rd group; 4th group (every group included 1 senior doctor, 2 associate senior doctors, and 2 attending doctors).

5. **Data Collection and Quality Control**

 Patient information and surgical information were collected from the medical record management system. Patient’s imaging data were collected from the PACS (picture archiving and communication system) imaging system. Two doctors independently recorded and proofread the data using the EpiData software (EpiData Association, Odense, Denmark). Blinding was applied to the measurer to ensure the objectivity of the screw accuracy evaluation.

6. **Statistical Analysis**

 Statistical analysis was performed using IBM SPSS Statistics ver. 24.0 (IBM Co., Armonk, NY, USA). Normally distributed continuous variables are represented by mean ± standard deviation. Nonnormally distributed continuous variables are represented by median (quartile). Categorical variables are represented by quantity (percentage). The chi-square test and Fisher exact test were used to evaluate the difference between categorical variables. Univariate tests were carried out on the potential risk factors of unsatisfactory screw position. A logistic regression test was used to identify the independent risk factors. Cal-
calculate the odds ratio (OR) and its 95% confidence interval (CI). A p-value of < 0.05 was considered statistically significant.

RESULTS

1. Demographic Data
A total of 163 robot-assisted thoracolumbar pedicle screw placement procedures were included in this study, and a total of 780 pedicle screws were placed. Four groups of spine surgeons performed all procedures. Among the patients, 70 were male, and 85 were female. The average age was 56.74 ± 13.40 years (range, 14–86 years), and the average BMI was 25.77 ± 3.74 kg/m². The preoperative diagnosis included 44 cases of lumbar disc herniation (26.99%), 38 cases of lumbar spinal stenosis (23.31%), 53 cases of lumbar spondylolisthesis (32.52%), and 28 cases of thoracolumbar fractures (17.18%). 135 cases underwent decompression and interbody fusion.

2. Pedicle Screw Accuracy
Of the 780 pedicle screws placed, 726 screws were grade A, 43 screws were grade B, and 11 screws were grade C. The perfect rate of robot-assisted pedicle screw placement was 93.08%, and the unsatisfactory rate (grads B-D) of robot-assisted pedicle screw placement was 6.92%.

3. Univariate Analysis
Univariate analysis of potential risk factors showed that gender (p = 0.672), age (p = 0.316), preoperative diagnosis (p = 0.899), and instrumented segment (p = 0.929), screw side (p = 0.573), and surgeons (p = 0.634) between group A and group B were not statistically significant. Differences in BMI (p = 0.020), bone density (p = 0.041), gap distance (p = 0.006), and surgical approach (p = 0.030) between group A and group B were statistically significant (Table 1).

In patients with severe obesity (BMI ≥ 30 kg/m²), the unsatisfactory rate (13.21%, 14 of 106) was higher than other patients (5.93%, 40 of 674) (p = 0.020). The unsatisfactory rate in patients with osteoporosis (8.94%, 32 of 358) was higher than that in other patients (5.21%, 22 of 422) (p = 0.041). When the gap distance is more than 3 levels (including 3 levels), the unsatisfactory rate was 13.28% (17 of 128), which is significantly higher than 6.44% (21 of 326) at a gap distance of 1 level and 4.91% (16 of 326) at a gap distance of 2 levels (p = 0.006). The unsatisfactory rate of percutaneously inserted screws (5.26%, 24 of 456) was lower than that of open inserted screws (9.26%, 30 of 324) (p = 0.030).

Table 1. Univariate analysis for potential risk factors of unsatisfactory screw position

<table>
<thead>
<tr>
<th>Potential risk factor</th>
<th>Group A (n = 726)</th>
<th>Group B (n = 54)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>328 (42.05)</td>
<td>26 (3.33)</td>
<td>0.672</td>
</tr>
<tr>
<td>Female</td>
<td>398 (51.03)</td>
<td>28 (3.59)</td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 60</td>
<td>352 (45.13)</td>
<td>30 (3.85)</td>
<td>0.316</td>
</tr>
<tr>
<td>< 60</td>
<td>374 (47.95)</td>
<td>24 (3.08)</td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 30</td>
<td>92 (11.79)</td>
<td>14 (1.79)</td>
<td>0.020</td>
</tr>
<tr>
<td>25–30</td>
<td>299 (38.33)</td>
<td>17 (2.18)</td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>335 (42.95)</td>
<td>23 (2.95)</td>
<td></td>
</tr>
<tr>
<td>Bone density</td>
<td></td>
<td></td>
<td>0.041</td>
</tr>
<tr>
<td>T value ≤ -2.5</td>
<td>326 (41.79)</td>
<td>32 (4.10)</td>
<td></td>
</tr>
<tr>
<td>T value > -2.5</td>
<td>400 (51.28)</td>
<td>22 (2.82)</td>
<td></td>
</tr>
<tr>
<td>Preoperative diagnosis</td>
<td></td>
<td></td>
<td>0.899</td>
</tr>
<tr>
<td>Thoracolumbar fracture</td>
<td>142 (18.21)</td>
<td>10 (1.28)</td>
<td></td>
</tr>
<tr>
<td>Lumbar disc herniation</td>
<td>179 (22.95)</td>
<td>13 (1.67)</td>
<td></td>
</tr>
<tr>
<td>Lumbar spinal stenosis</td>
<td>197 (25.26)</td>
<td>13 (1.67)</td>
<td></td>
</tr>
<tr>
<td>Lumbar spondylolisthesis</td>
<td>208 (26.67)</td>
<td>18 (2.31)</td>
<td></td>
</tr>
<tr>
<td>Instrumented segment</td>
<td></td>
<td></td>
<td>0.929</td>
</tr>
<tr>
<td>T10–L2</td>
<td>138 (17.69)</td>
<td>10 (1.28)</td>
<td></td>
</tr>
<tr>
<td>L3–S1</td>
<td>588 (75.38)</td>
<td>44 (5.64)</td>
<td></td>
</tr>
<tr>
<td>Screw side</td>
<td></td>
<td></td>
<td>0.573</td>
</tr>
<tr>
<td>Left</td>
<td>361 (46.28)</td>
<td>29 (3.72)</td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>365 (46.79)</td>
<td>25 (3.21)</td>
<td></td>
</tr>
<tr>
<td>Distance between the instrumented level and tracker</td>
<td></td>
<td></td>
<td>0.006</td>
</tr>
<tr>
<td>1 Level</td>
<td>305 (39.10)</td>
<td>21 (2.69)</td>
<td></td>
</tr>
<tr>
<td>2 Levels</td>
<td>310 (39.74)</td>
<td>16 (2.05)</td>
<td></td>
</tr>
<tr>
<td>≥ 3 Levels</td>
<td>111 (14.23)</td>
<td>17 (2.18)</td>
<td></td>
</tr>
<tr>
<td>Surgical approach</td>
<td></td>
<td></td>
<td>0.030</td>
</tr>
<tr>
<td>Percutaneous</td>
<td>432 (55.38)</td>
<td>24 (3.08)</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>294 (37.69)</td>
<td>30 (3.85)</td>
<td></td>
</tr>
<tr>
<td>Surgeons</td>
<td></td>
<td></td>
<td>0.634</td>
</tr>
<tr>
<td>1st group</td>
<td>153 (19.62)</td>
<td>9 (1.15)</td>
<td></td>
</tr>
<tr>
<td>2nd group</td>
<td>125 (16.03)</td>
<td>7 (0.90)</td>
<td></td>
</tr>
<tr>
<td>3rd group</td>
<td>320 (41.03)</td>
<td>28 (3.59)</td>
<td></td>
</tr>
<tr>
<td>4th group</td>
<td>128 (16.41)</td>
<td>10 (1.28)</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as number (%).
Group A, perfect screw positions; group B, unsatisfactory screw positions.
Risk Factors of Unsatisfactory RA Screw Placement

4. Multivariate Analysis

Multivariate logistic regression analysis included the following variables: BMI, bone density, gap distance, and surgical approach.

Multivariate logistic regression analysis (Hosmer-Lemeshow test: chi-square = 3.216, p = 0.920) found that the independent risk factors of unsatisfactory screw position were severe obesity (BMI ≥ 30 kg/m\(^2\)) (OR, 2.459; 95% CI, 1.199–5.044; p = 0.014), osteoporosis (T value ≤ -2.5) (OR, 1.857; 95% CI, 1.046–3.295; p = 0.034), and gap distance ≥ 3 levels (OR, 2.216; 95% CI, 1.119–4.387; p = 0.022) (Table 2).

Table 2. Multivariate analysis for potential risk factors of unsatisfactory screw position

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index (kg/m(^2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>25–30</td>
<td>0.893 (0.464–1.716)</td>
<td>0.734</td>
</tr>
<tr>
<td>≥ 30</td>
<td>2.459 (1.199–5.044)</td>
<td>0.014</td>
</tr>
<tr>
<td>Bone density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T value > -2.5</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>T value ≤ -2.5</td>
<td>1.857 (1.046–3.295)</td>
<td>0.034</td>
</tr>
<tr>
<td>Distance between the instrumented level and the tracker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Level</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>2 Levels</td>
<td>0.746 (0.380–1.465)</td>
<td>0.395</td>
</tr>
<tr>
<td>≥ 3 Levels</td>
<td>2.216 (1.119–4.387)</td>
<td>0.022</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval.

DISCUSSION

1. Risk Factors of Unsatisfactory Screw Placement

In this study, robot-assisted pedicle screw fixation achieved a perfect position in 93.08% of pedicle screws. We found 3 primary factors that may affect the accuracy of TiRobot robot-assisted pedicle screw placement, including severe obesity (BMI ≥ 30 kg/m\(^2\)) and osteoporosis (T value ≤ -2.5), and gap distance ≥ 3 levels.

As our previous report, 16.2% of free-hand pedicle screws did not achieve a perfect trajectory (grade A). Some studies have demonstrated that the robot-assisted technique is superior to the free-hand method in terms of pedicle screw accuracy. Traditionally, pedicle screws with grades A and B are clinically acceptable. However, we should work towards the most accurate position (grade A) with the application of surgical robots. Similar to our study, Zhang et al. analyzed the risk factors of Renaissance robot-assisted pedicle screw malposition. They found that obesity, osteoporosis, vertebral rotation, and congenital scoliosis were the risk factors of robot-assisted screw malposition.

2. Obesity

Severe obesity is one of the risk factors of unsatisfactory screw position, which may be due to the excessive thickness and pressure of soft tissue. Overweight and obesity are prevalent in patients who underwent spine surgery. Studies have found a linear correlation between the incidence of postoperative complications and BMI in spinal fusion surgery. Excessive soft tissue pressure may compress the guidewire in obese patients, thereby changing the screw trajectory. Because the guidewire has a certain elasticity, in patients with excessive soft tissue pressure in the lower back, the guidewire may be challenging to enter the pedicle according to the direction guided by the robotic arm.

3. Osteoporosis

Patients with osteoporosis are also more likely to have unsatisfactory screw position. The guidewire could not be firmly fixed to the osteoporotic bone. A slight displacement of the guidewire will cause the screw to deviate from the planned position. Besides, when using the Renaissance robot, osteoporosis may affect the accuracy of image registration, thus compromising the screw accuracy. The biomechanical stability of the pedicle screw fixation mainly depends on the bonding strength of the bone and the screw. The guidewire and the screw could not be firmly fitted with the surrounding bone due to the bone loss caused by osteoporosis, so that displacement may occur.

4. Distance Between the Instrumented Level and the Tracker

The distance between the instrumented level and the patient tracker is also a significant risk factor of unsatisfactory screw position. The results of this study indicate that when the gap distance exceeds 3 levels, the unsatisfactory rate of screw position increases significantly. The patient’s spine moves up and down with the respiratory movement. This physiological movement of each vertebra is different and may not be adequately detected by the real-time navigation system, especially the levels far away from the tracker and unstable levels. When the guidewire is inserted, the navigation system is unable to reflect the dynamic changes of each vertebral body in real-time, which may cause the guidewire to deviate from the planned trajectory.
Boon Tow et al. found that the accuracy of navigation-assisted pedicle screw placement depends on the distance between the tracker and the screw. Jin et al. also found that the distance between the screw and the tracker over 3 levels is a risk factor for misplacement of navigation-assisted pedicle screws. We suggest that in long-segment surgery, the surgeon can move the patient tracker closer to the instrumented level and reacquire intraoperative CT images for registration.

5. Intraoperative Factors of the Surgeon

In addition to the factors included in this study, many other factors may affect the accuracy of robot-assisted pedicle screw placement. Among them, the doctor’s intraoperative manipulation plays an important role.

Any new surgical technique has a specific learning curve. When surgeons performed robot-assisted spine surgery initially, there was a cognitive process of the robot’s operating principle. In the early stage of robot-assisted surgery, the problem of insufficient screw accuracy may be encountered. Doctors need to complete a certain amount of surgery to acquire robot-assisted surgical techniques.

In robot-assisted surgery, the screw position is planned by the surgeon based on intraoperative 3-dimensional images. Different surgeons may plan various pedicle screw trajectories with discrepant quality, which may also affect the accuracy of the screw. If the planned screw entry point is on a surface with a large slope or an irregular shape, the guidewire and the screw are more likely to slip when inserted. Ghasem et al. found that most of the robot-assisted surgical technical problems with screw malposition were related to the bony surface skidding. Ringel et al. concluded that slipping of the implantation cannula at the screw entrance point seems a vulnerable aspect potentially leading to screw malposition.

The surgeon’s intraoperative error will also affect the accuracy of the screws. If the surgeon accidentally touches the patient tracker, the positioning accuracy of the robotic navigation system may be significantly declined if the registration is not performed again. Besides, the relative position of each vertebra is identified as fixed in the robotic navigation system. Nevertheless, there is a slight motion between each vertebra. During the insertion of the guidewire under the robotic guidance, overexertion may cause the instrumented vertebrae to be displaced relative to the proximal segments. Surgeons should avoid using excessive force when inserting the guidewire and the screw. The guide sleeve placed at the distal end of the robotic arm is vulnerable to pressure from surrounding soft tissue, which may also change the screw position. To avoid the effect of soft tissue pressure, sufficient exposure in open surgery or inserting the sleeve through muscles in percutaneous surgery is recommended.

6. Limitations

This study has some limitations. Firstly, this is a single-center retrospective study. A multicenter prospective study with a larger sample size will be required to verify the results of this study in the future. Secondly, due to the limited sample size, anatomical factors and anesthesia factors (such as spinal rotation, instability, deformity, and intraoperative tidal volume) that may affect the screw accuracy were not evaluated in this study. In the next study, we will further observe whether the patient’s anatomical features are related to the accuracy of robot-assisted pedicle screw placement.

CONCLUSION

During robot-assisted pedicle screw placement for patients with severe obesity, osteoporosis, and segments 3 levels away from the tracker, vigilance should be maintained during surgery to avoid postoperative complications due to unsatisfactory screw position.

CONFLICT OF INTEREST

The authors have nothing to disclose.

ACKNOWLEDGMENTS

This study was supported by National Natural Science Foundation of China (U1713221).

REFERENCES

Commentary on “Risk Factors of Unsatisfactory Robot-Assisted Pedicle Screw Placement: A Case-Control Study”

Jun Ho Lee
Department of Neurosurgery, Kyung Hee University Medical Center, Seoul, Korea

Zhang et al. have shared their experience with robot-assisted pedicle screw placement from their 163 patients undergoing corrective lumbar posterior fixations, have pin-pointed out the three risk factors that might prelude the accurate screw placement deterrence even under the sophisticated robotics assistance. Despite the pioneering effort from the authors with the inclusion of more than 780 screw placement maneuvers over a year span aided with diverse statistical analyses, the reviewer cannot preclude the feeling that the authors have restrained themselves into the too simplified or anticipated results; ‘obesity, osteoporosis, or remote segments from the tracker matters.’

Technical wisely, even in some fully exposed occasion, it is sometimes not feasible to manually or faithfully obey the route or tract suggested by robotic arms from a fat, fragile subjects intraoperatively due to regional anatomical distortion. Subsequently, as have brought up with the controversies regarding the surgical navigation usage previously, these phenomena or limitations might be fraught with the skepticism about the robot-assisted spinal surgery efficacy/efficiency both in terms of clinical aspect and cost-utility.

Despite all these elaborations from the authors regarding the beneficial aspects of the robotics application on the spine surgery field, their conclusions still lack the promising impact; from the reviewer’s perspective, ‘it is unclear if the complication rate is significantly different compared to traditional methods of spinal instrumentation’ Validation on the measurements methods of the screw placements accuracies as well as a fully comparative fashioned analysis even after the few additions of historic data from the previously published references, potential suggestions/ directions that might drive to overcome the current steep learning curves and technological glitches, commitments both from the company and current-in-use institutes on their efforts to dispose of the current financial hurdles, and the necessity of a solid healthcare infrastructure to support these machines usage might be able to add the future scientific value for this analysis.

CONFLICT OF INTEREST

The author has nothing to disclose.
REFERENCES

Improvement in Neurogenic Bowel and Bladder Dysfunction Following Posterior Decompression Surgery for Cauda Equina Syndrome: A Prospective Cohort Study

Ryo Kanematsu1, Junya Hanakita1, Toshiyuki Takahashi1, Manabu Minami1, Tomoo Inoue1,2, Kazuhiro Miyasaka1, Hiroya Shimauchi-Ohtaki1, Manabu Ueno1, Fumiaki Honda1,4

1Department of Spinal Disorders Center, Fujieda Heisei Memorial Hospital, Fujieda, Japan
2Department of Neurosurgery, Saitama Red Cross Hospital, Saitama, Japan
3Department of Urology, Fujieda Heisei Memorial Hospital, Fujieda, Japan
4Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Japan

Objective: The mechanisms of neurogenic bowel dysfunction (NBD) and neurogenic bladder (NB), which are major consequences of spinal cord injury and occasionally degenerative lumbar disease. The following in patients with cauda equina syndrome who underwent posterior decompression surgery was investigated: (1) the preoperative prevalence of NBD and NB, measured using the Constipation Scoring System (CSS) and International Prostate Symptoms Score (IPSS); (2) the degree and timing of postoperative improvement of NBD and NB.

Methods: We administered the CSS and IPSS in 93 patients before surgery and at 1, 3, 6, and 12 months postoperatively. We prospectively examined patient characteristics, Japanese Orthopaedic Association (JOA) score, and postoperative improvements in each score.

Results: The prevalence of symptomatic defecation and urinary symptoms at admission were 37 patients (38.1%) and 31 patients (33.3%), respectively. Among the symptomatic patients with defecation problems, 12 patients had improved at 1 month, 13 at 3 months, 14 at 6 months, and 13 at 12 months postoperatively. Among the symptomatic patients with urinary problems, 5 patients improved at 1 month, 11 at 3 months, 6 at 6 months, and 10 at 1 year postoperatively. Comparing patients with improved versus unimproved in CSS, the degree of JOA score improvement was a significant prognosis factor (p < 0.05; odds ratio, 1.05).

Conclusion: The prevalence of symptomatic defecation and urinary symptoms in patients with cauda equina syndrome was 38.1% and 33.3%, respectively. Decompression surgery improved symptoms in 30%-50%. These effects were first observed 1 month after the operation and persisted up to 1 year.

Keywords: Neurogenic bowel dysfunction, Neurogenic bladder, Cauda equina syndrome

INTRODUCTION

Neurogenic bowel dysfunction (NBD) and neurogenic bladder (NB) are 2 major complications of spinal cord or nerve root injury. Although neurologic damage secondary to spinal cord injury differs among patients depending on the neurologic level and severity of the lesion, the changes in bowel motility, sphincter control, and gross motor dexterity interact to make bowel...
management a major life-style problem limiting quality of life. Hanson and Franklin\(^1\) reported that 80% of male paraplegics and 46% of male tetraplegics would rank bowel and bladder as their greatest functional loss of mobility.

Whereas symptomatic lumbar degenerative disease causes spinal claudication as well as back and radicular leg pain. In severe cases, this can lead to loss of bladder and bowel control, resulting in constipation, frequent urination, and functional obstruction. However, the mechanisms of NBD and NB have not been clearly investigated and few studies have comprehensively evaluated pre-/postoperative NB.\(^2\)\(^-\)\(^6\)

In this study, we investigated the following matters in patients with cauda equina syndrome who underwent posterior decompression surgery with or without lumbar fusion: (1) the preoperative prevalence of NBD and NB, evaluated using the Constipation Scoring System (CSS) and International Prostate Symptoms Score (IPSS); (2) the degree and timing of postoperative improvement of NBD and NB.

MATERIALS AND METHODS

We prospectively analyzed data collected from February 2018 to March 2020 for 93 patients who underwent lumbar spinal decompression surgery with or without fusion for the treatment of lumbar degenerative disease. The patient inclusion criteria were as follows: (1) claudication resistant to repeated conservative treatment, (2) neurological deficit such as reduced tendon reflex in the bilateral lower extremities and pain/numbness in the bilateral lower extremities compatible with cauda equina syndrome, (3) central canal stenosis revealed via magnetic resonance imaging and defects and/or blocking of contrast media in the cauda equina revealed via myelography. The exclusion criteria were as follows: (1) lower urinary tract lesions such as those associated with prostatic hypertrophy, (2) coincident cer-

Table 1. Constipation Scoring System

<table>
<thead>
<tr>
<th>Variable</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of bowel movements</td>
<td></td>
</tr>
<tr>
<td>1–2 times per 1–2 days</td>
<td>0</td>
</tr>
<tr>
<td>2 times per week</td>
<td>1</td>
</tr>
<tr>
<td>Once per week</td>
<td>2</td>
</tr>
<tr>
<td>Less than once per week</td>
<td>3</td>
</tr>
<tr>
<td>Less than once per month</td>
<td>4</td>
</tr>
<tr>
<td>Difficulty: painful evacuation effort</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>0</td>
</tr>
<tr>
<td>Rarely</td>
<td>1</td>
</tr>
<tr>
<td>Sometimes</td>
<td>2</td>
</tr>
<tr>
<td>Usually</td>
<td>3</td>
</tr>
<tr>
<td>Always</td>
<td>4</td>
</tr>
<tr>
<td>Completeness: feeling incomplete evacuation</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>0</td>
</tr>
<tr>
<td>Rarely</td>
<td>1</td>
</tr>
<tr>
<td>Sometimes</td>
<td>2</td>
</tr>
<tr>
<td>Usually</td>
<td>3</td>
</tr>
<tr>
<td>Always</td>
<td>4</td>
</tr>
<tr>
<td>Pain: abdominal pain</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>0</td>
</tr>
<tr>
<td>Rarely</td>
<td>1</td>
</tr>
<tr>
<td>Sometimes</td>
<td>2</td>
</tr>
<tr>
<td>Usually</td>
<td>3</td>
</tr>
<tr>
<td>Always</td>
<td>4</td>
</tr>
</tbody>
</table>

(Continued)
istical or thoracic lesions, (3) history of spinal, urological, or gynecological surgery, (4) new medication regimen for treatment of digestive organs, bladder, or prostate problems, (5) medication regimen including opioids that could influence bowel function. All patients underwent urologic evaluation by a urologist to rule out lower urinary tract lesions. Detailed micturition and defecation histories were obtained from each patient using the CSS and IPSS on admission. All of these parameters were evaluated at 1, 3, 6, and 12 months postoperatively. Pre- and postoperative clinical symptoms were assessed using the CSS, IPSS, and the Japanese Orthopaedic Association (JOA) score. Additionally, we measured cross-sectional area of the thecal sac at the spinal segment exhibiting most severe stenosis using the Image J software program. Regarding defecation and urinary symptoms, we prospectively examined data regarding patient age, sex, disease status, lesion level, and changes in each score, and investigated prognostic factors contributing to the improvement of the defecation and urinary symptoms comparing improved patients with unimproved patients. This study was approved by the Institutional Review Board of Fujieda Heisei Memorial Hospital (FHR 2020-1).

1. Constipation Scoring System
The CSS is based on 8 questions concerning evacuation. For each question, the patient chooses 1 out of 8 options indicating the severity of the particular symptom. The answers are assigned points from 0 to 4. The total score can therefore range from 0 to 30. The questions refer to the following evacuation symptoms: (1) Frequency of bowel movements, (2) Difficulty: painful evacuation efforts, (3) Completeness: feeling of incomplete evacuation, (4) Pain: abdominal pain, (5) Time: minutes in lavatory per attempt, (6) Assistance: type of assistance, (7) Failure: unsuccessful attempts at evacuation per 24 hours, (8) History: duration of constipation (Table 1). In this study, a score of more than 4 was defined as symptomatic NBD. Patients who varied from more than 4 preoperatively to less than 3 postoperatively were defined as having experienced “significant improvement” in CSS.

2. International Prostate Symptoms Score
The IPSS is based on the answers to 7 questions concerning urinary symptoms and 1 question concerning quality of life. For each question concerning urinary symptoms, the patient is asked to choose 1 out of 6 answers indicating the severity of that particular symptom. The answers are assigned points from 0 to 5. The total score can therefore range from 0 to 35 (asymptomatic to very symptomatic). The questions refer to the following urinary symptoms: (1) incomplete emptying, (2) frequency, (3) intermittency, (4) urgency, (5) weak stream, (6) straining, (7) nocturia (Table 2). In this study, a score of more than 8 was defined as symptomatic NB.
fined as indicating “symptomatic” NB. Patients who varied from more than 8 preoperatively to less than 7 postoperatively were defined as having experienced “significant improvement” in IPSS.

3. Statistical Analysis

Statistical analyses were performed using JMP statistical software ver. 13 (SAS Institute Inc., Cary, NC, USA). The chi-square test, Mann-Whitney U-test, and Fisher exact probability test were applied for all of statistical assessments. Logistic regression analysis was used for multivariate analysis. Significance of the obtained results was judged at the 5% level.

Table 3. Demographic and clinical data of all patients with lumbar degenerative disease

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>71.5 (48–92)</td>
</tr>
<tr>
<td>Sex, male:female</td>
<td>49:44</td>
</tr>
<tr>
<td>Etiology</td>
<td></td>
</tr>
<tr>
<td>Lumbar canal stenosis</td>
<td>57</td>
</tr>
<tr>
<td>Lumbar disc hernia</td>
<td>12</td>
</tr>
<tr>
<td>Lumbar spondylolisthesis</td>
<td>21</td>
</tr>
<tr>
<td>Lumbar facet synovial cyst</td>
<td>2</td>
</tr>
<tr>
<td>The ossification of the yellow ligament in the lumbar spine</td>
<td>1</td>
</tr>
<tr>
<td>Level of stenosis*</td>
<td></td>
</tr>
<tr>
<td>L2/3</td>
<td>11</td>
</tr>
<tr>
<td>L3/4</td>
<td>32</td>
</tr>
<tr>
<td>L4/5</td>
<td>71</td>
</tr>
<tr>
<td>L5/S1</td>
<td>7</td>
</tr>
<tr>
<td>No. of stenosis</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Cross-sectional area of the thecal sac at the most severe stenosis (mm²)</td>
<td>48.5 (10–127)</td>
</tr>
<tr>
<td>JOA score</td>
<td></td>
</tr>
<tr>
<td>Preoperative score</td>
<td>16.8 (7–25)</td>
</tr>
<tr>
<td>Postoperative score</td>
<td>22.1 (12–29)</td>
</tr>
<tr>
<td>Preoperative score of IPSS</td>
<td>7.7 (0–31)</td>
</tr>
<tr>
<td>Preoperative score of CSS</td>
<td>3.5 (0–16)</td>
</tr>
</tbody>
</table>

Values are presented as mean (range) or number.

JOA, Japanese Orthopaedic Association; IPSS, International Prostate Symptoms Score; CSS, Constipation Scoring System.

*There are some overlapping.

RESULTS

The patient group constituted 49 men and 44 women with an average age of 71.5 years (range, 48–92 years). The patient diagnoses were as follows: 57 patients had lumbar canal stenosis, 12 had a lumbar disc hernia, 21 had lumbar spondylolisthesis, 2 had a lumbar facet synovial cyst, and 1 had ossification of the yellow ligament in the lumbar spine. The level of stenosis was 11 at L2/3, 32 at L3/4, 71 at L4/5, and 7 at L5/S1 (The total does not add up because of multiple stenoses). The clinical findings are summarized in Table 3. Seventy-two patients received only decompression surgery and 21 patients underwent decompression with interbody fusion. Symptomatic defecation and urinary symptoms were present in 37 (38.1%) and 31 patients (33.3%), respectively. Among the symptomatic patients with defecation problems, 2 were excluded because they began taking new medication for constipation postoperatively. Of the 35 (20 males, 15 females) patients, 12 (5 males, 7 females) improved at 1 month, 13 (6 males, 7 females) improved at 3 months, 14 (7 males, 7 females) improved at 6 months, and 13 (6 males, 7 females) improved at 12 months postoperatively (Fig. 1). In the 13 patients who showed improvement at 12 months postoperatively, the index of “difficulty: painful evacuation efforts” and “failure: unsuccessful attempts at evacuation per 24 hours” ratios had especially improved (Table 4). Among these 13 patients with improved defecation symptoms one year after the operation, 6 patients had preoperative urinary symptoms. Of these 6 patients, 3 did not show improvements in urinary symptoms. Among the symptomatic patients with urinary symptoms, 11 were excluded from the study because they began taking new medication for urinary symptoms postoperatively. Of the remaining

Fig. 1. Graph shows postoperative improvement of Constipation Scoring System in patients with defecation symptoms on admission and at 1, 3, 6, and 12 months postoperatively.

https://doi.org/10.14245/ns.2142252.126
Table 4. The comparison of CSS subcategory on admission and postoperative 12 months

<table>
<thead>
<tr>
<th>CSS subcategory</th>
<th>Preoperative</th>
<th>Postoperative 12 months</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of bowel movements</td>
<td>0.15</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>Difficulty: painful evacuation effort</td>
<td>1.85</td>
<td>0.23</td>
<td><0.05</td>
</tr>
<tr>
<td>Completeness: feeling incomplete evacuation</td>
<td>1.08</td>
<td>0.38</td>
<td>NS</td>
</tr>
<tr>
<td>Pain: abdominal pain</td>
<td>0.46</td>
<td>0.07</td>
<td>NS</td>
</tr>
<tr>
<td>Time: minutes in lavatory per attempt</td>
<td>0.85</td>
<td>0.31</td>
<td>NS</td>
</tr>
<tr>
<td>Assistance: type of assistance</td>
<td>0.38</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>Failure: unsuccessful attempts for evacuation per 24 hours</td>
<td>0.77</td>
<td>0.23</td>
<td><0.05</td>
</tr>
<tr>
<td>History: duration of constipation</td>
<td>0.77</td>
<td>0.31</td>
<td>NS</td>
</tr>
</tbody>
</table>

CSS, Constipation Scoring System; NS, not significant.

Fig. 2. Graph shows postoperative improvement of International Prostate Symptoms Score in patients with urinary symptoms on admission and at 1, 3, 6, and 12 months postoperatively.

20 (14 males, 6 females) patients, 5 (4 males, 1 female) improved at 1 month, 11 (7 males, 4 females) improved at 3 months, 6 (4 males, 2 females) improved at 6 months, and 10 (7 males, 3 females) improved at 12 months postoperatively (Fig. 2). Among the 10 patients whose urinary symptoms improved at one year postoperatively, 6 patients had defecation symptoms. Of this group, 2 patients did not show improvement of defecation symptoms. The improvement rate of CSS and IPSS at 1 year postoperatively were 30%, 50% in male and 46.7%, 50% in female, respectively. Comparing patients with improved versus unimproved in CSS, the degree of JOA score improvement was a significant prognosis factor (p < 0.05; odds ratio, 1.05) (Table 5). Comparing patients with improved versus unimproved symptoms in IPSS revealed no significant difference in each factor (Table 6). Among 18 patients with both preoperative defecation and urinary symptoms, 5 patients (27.8%) showed postoperative improvements in both types of symptoms. However, in the other 13 patients, only either defecation or urinary symptoms improved.

DISCUSSION

NBD following spinal cord injury is increasingly recognized as an area of major physical and psychological difficulty for spi-
nal cord injury patients.10 NB results from compression of the parasympathetic fibers of the S2–4 nerve roots innervating the bladder, resulting in areflexic or acontractile detrusor. Some researchers have reported that urinary symptoms due to lumbar degenerative diseases improved following decompression surgery.2–6 Estimates of the prevalence of lower urinary tract symptoms associated with lumbar degenerative disease vary widely throughout the literature, ranging from 10% to 70%, due to differences in definitions and diagnostic modalities.2–6 Further, no reports have examined both NB and NBD in patients with cauda equina syndrome.

In the present study, we meticulously examined defecation and urinary symptoms in patients with lumbar degenerative diseases using the CSS and IPSS, and conducted follow-up assessments until 1 year postoperatively. Our results indicate that about 30%–40% of patients with cauda equina syndrome had symptomatic defecation and urinary symptoms. Improvements in symptoms were found in 30%–50% of these patients following decompression surgery at just 1 month postoperatively, and these effects persisted for at least for 1 year.

Little is known about the pathophysiology of bowel dysfunction in patients with cauda equina syndrome. Stimulatory sympathetic innervation for the bowel orally to the splenic flexure is derived from the vagal nerves, while parasympathetic innervation of the distal colon and rectum is transmitted via the second to forth sacral roots (S2–4).11 Unlike in the urinary tract, the gut wall contains intrinsic pacemakers and a neural network that is part of the sympathetic and parasympathetic chain that programs the activity of the smooth muscles that are necessary to expel waste material.11 Krog et al.12 reported that chronic conal or caudal equina lesions in patients with spinal cord injury significantly prolonged transit times, not only at the transverse and descending clonic segments, but also at the rectosigmoid region. In our study, BSS, which means the parameter of transit time, did not vary. However, the indices of “difficulty: painful evacuation effort” and “failure: unsuccessful attempts at evacuation per 24 hours” in the CSS had significantly improved. To the best of our knowledge, no studies have described the relationship between constipation and cauda equina syndrome.

We speculated that a reduction in the frequency of bowel movements might be caused by compression of the cauda equina, resulting in constipation.

Previous reports on treatments for bladder dysfunction have demonstrated improvements in 56.5% to 75% of patients.14 This variation in the degree of improvement may be influenced by differences not only in the modality used to treat urinary symptoms but also in the definition of impairment. Although the muscles responsible for bowel movements and bladder function are innervated by the S2–4 spinal nerves, discrepancies in postoperative improvement have been observed between defecation and urinary function, as shown in the present study. The mechanisms underlying this discrepancy have not been comprehensively investigated. The difference in the storage volume of stool and urine may be one important factor.

Male and female have comparable anorectal anatomy, yet they differ significantly in gross anatomy and physiology of the lower urinary tract.13 In this study, the improvement rate of CSS and IPSS at 1 year postoperatively were 30%, 50% in male and 46.7%, 50% in female, respectively. There was no significant difference about the improvement of CSS and IPSS. We could not analyze prognostic factors because of small numbers in each group, which could be one of limitations.

The present study has several other limitations. First, the causes of constipation were varied and may be multifactorial to include mental status, meal contents, and activities of daily living. Particularly, the relationship between leg pain and constipation should be taken into consideration. It is well known that pain due to sympathetic hyperactivity can cause micturition or defecation difficulties.14 Second, the cutoff value of the CSS for symptomatic patients was not absolute. Although we used a CSS score cutoff of “4,” the rate of symptomatic patients with defecation could have varied further. Despite these limitations, we believe that the current article provides important information regarding defecation and urinary symptoms in patients with cauda equina syndrome.

CONCLUSION

The prevalence of symptomatic defecation and urinary symptoms in patients with lumbar degenerative diseases were 38.1% and 33.3%, respectively. Decompression surgery could improve symptoms in 30%–50% of patients, and the positive effects emerged at one month after the operation and persisted for at least one year.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

1. Hanson RW, Franklin MR. Sexual loss in relation to other

Outcomes of Transforaminal Lumbar Interbody Fusion Using Unilateral Versus Bilateral Interbody Cages

Conor P. Lynch, Elliot D.K. Cha, Augustus J. Rush III, Caroline N. Jadczak, Shruthi Mohan, Cara E. Geoghegan, Kern Singh

Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA

Objective: To assess the impact of bilateral versus unilateral interbody cages on outcomes for minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) procedures.

Methods: A retrospective review for primary, elective, single-level MIS TLIF procedures with bilateral posterior instrumentation from 2008–2020 was performed. Patients were grouped according to unilateral or bilateral interbody cage use. Procedures performed without static interbody cages or indicated for trauma, infection, malignancy were excluded. Patient-reported outcomes (PROs) included visual analogue scale (VAS), Oswestry Disability Index, 12-item Short Form health survey physical composite score (SF-12 PCS), Patient-Reported Outcome Measurement Information System physical function (PROMIS-PF). PROs were collected preoperatively and postoperatively. Change in PROs (Δ) was calculated and compared between groups. Achievement of minimum clinically important difference (MCID) was calculated using established values from the literature. Achievement rates were compared between groups using logistic regression.

Results: The study included 151 patients, with 111 unilateral and 40 bilateral cage placements. Charlson Comorbidity Index, diabetes, and insurance status differed between groups (p < 0.050). Prevalence of degenerative and isthmic spondylolisthesis (both p ≤ 0.002), operative level (p = 0.003), and postoperative length of stay (p = 0.022) significantly differed between groups. The unilateral group had lower 1-year arthrodesis rates (p = 0.035). Preoperative VAS leg (p = 0.017) and SF-12 PCS (p = 0.045) were worse for the unilateral group. ΔPROMIS-PF was greater for the bilateral group at 2 years (p = 0.001). Majority of patients achieved an overall MCID for all PROs, except VAS leg (bilateral group).

Conclusion: While preoperative status and postoperative arthrodesis rates differed, patients achieved an MCID at similar rates regardless of use of unilateral or bilateral cages.

Keywords: Interbody cage, Instrumentation, Patient-reported outcomes, Transforaminal lumbar interbody fusion, Lumbar fusion

INTRODUCTION

Recent years have seen a steep increase in the number of elective lumbar fusions performed in the United States.1 While a number of lumbar fusion techniques exist, the minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) was more recently introduced to mitigate risks associated with established fusion procedures such as nerve root damage and trauma to surrounding soft tissue.2,3 MIS TLIF has several advantages over more traditional fusion procedures including shorter operative times and more rapid postoperative recovery.2,4 This technique involves a posterolateral approach to the disc space followed by insertion of a spacer between vertebral bodies to help maintain adequate distance. The most common type of spacer is an interbody cage, which helps maintain intervertebral height and rigidity while reducing the chances of graft

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2021 by the Korean Spinal Neurosurgery Society
Surgeons have a number of options regarding interbody cages, including the placement of either unilateral or bilateral cages, a choice that may vary based on patient-specific complexities or limited disc space.6

Currently, literature is limited regarding the impact of unilateral or bilateral placement of interbody cages on postoperative outcomes following TLIF. Results of some studies have suggested that unilateral cages may be associated with shorter operative duration and decreased blood loss,7,8 while others suggest that unilateral cage placement may result in decreased stability or increased risk of cage failure compared to other techniques.9,10 Furthermore, Aoki et al.7 have suggested that similar rates of definitive arthrodesis may be achieved with either type of cage placement. However, many of these previous studies have not adequately controlled for the effects of pedicle screw instrumentation, which has a number of important implications for postoperative outcomes.11-13

In addition to more objective biomechanical models and perioperative measurements, surgeons may turn to Patient-Reported Outcome Measures (PROMs) to better quantify patients' actual perceptions in order to evaluate interventional effectiveness. Massel et al. compared visual analogue scale (VAS) back pain between cage techniques and Aoki et al. utilized VAS back and leg as well as Japanese Orthopaedic Association scores to compare patient-reported outcomes (PROs).7,8 Although both studies offered insight into how cage technique may alter PROMs, the former specifically aimed to compare outcomes for isthmic vs degenerative spondylolisthesis while the latter failed to control for posterior instrumentation.7,8

Given limited literature available regarding the use of unilateral vs bilateral cages for TLIF procedures, the present study employs a broader range of PROMs to assess pain, disability, and physical function. Additionally, our analysis considers these postoperative outcomes in terms of the minimum clinically important difference (MCID), which measures the smallest magnitude of change in scores that a patient still perceives as beneficial14 and can therefore be helpful in assessing the true benefit of an intervention. Furthermore, by including only patients with bilateral posterior instrumentation, we seek to provide a less biased assessment of objective outcomes such as rates of arthrodesis, cage subsidence, and need for revision surgery. This study aims to expand upon the available literature by assessing whether comparable outcomes can be achieved through the use of bilateral vs unilateral interbody cages for MIS TLIF procedures with the use of bilateral posterior instrumentation.

MATERIALS AND METHODS

1. Patient Population
Informed patient consent and Institutional Review Board approval (ORA 14051301) were obtained prior to study onset. We conducted a retrospective review of a prospectively maintained surgical registry for lumbar fusion patients from April 2008 to September 2020. Patients undergoing primary, elective, single-level MIS TLIF procedures with bilateral pedicle screw instrumentation performed for degenerative spinal pathology were included. Exclusion criteria were procedures that did not include the use of an interbody cage, used an expandable (non-static) cage, or were indicated due to trauma, infection, or malignancy. All procedures were performed by a single attending spine surgeon at a single academic institution.

2. Data Collection
Information regarding patient demographics, preoperative spinal pathology, and perioperative characteristics were collected. Demographic information consisted of age, sex, body mass index (BMI), smoking status, diabetic status, American Society of Anesthesiologists (ASA) physical status classification, Charlson Comorbidity Index (CCI), and insurance/payment type. Preoperative spinal pathology was categorized in terms of recurrent herniated nucleus pulposus, degenerative spondylolisthesis, and isthmic spondylolisthesis. Operative levels as well as the type of bone graft material used were recorded for all patients. Perioperative variables included operative duration (from skin incision to skin closure, in minutes), estimated blood loss (EBL; in mL), and postoperative length of stay (in days). Arthrodesis was assessed based on computed tomography of the lumbar spine at 1-year follow-up. PROMs including VAS back, VAS leg, Oswestry Disability Index (ODI), 12-item Short Form health survey physical composite score (SF-12 PCS), and Patient-Reported Outcomes Measurement Information System Physical Function (PROMIS-PF) were administered at preoperative and 6 weeks, 12 weeks, 6 months, 1 year, and 2 years postoperative timepoints.

3. Surgical Technique
All MIS TLIF procedures were performed utilizing the Wiltse technique. Fluoroscopic guidance was used to identify the level of interest. For patients undergoing unilateral cage placement, a 2- to 3-cm incision was made lateral to midline on side of intended cage facilitating a paramedian approach. Sequential dilators were used to enlarge the pathway progressively. Unilateral
laminectomy and facetectomy were performed through a single 20-mm nonexpandable tubular retractor.

For patients undergoing bilateral cage placement, 2 separate 2- to 3-cm incisions were made lateral to midline facilitating paramedian approaches bilaterally. Sequential dilators were used to enlarge the pathways progressively. Bilateral laminectomy and facetectomy were performed through bilateral 20-mm nonexpandable tubular retractors.

After decompression, the intervertebral disc was identified, incised, and removed; the end plates were prepared with sequential end plate cutters either unilaterally or bilaterally. Local allograft collected during laminectomy and facetectomy was prepared and impacted anteriorly before interbody cage placement. Cages were packed with local bone graft, iliac crest bone graft, and/or bone morphogenic protein-2 (BMP-2)/synthetic bone graft substitute. A single interbody cage was impacted into place for unilateral cases, and equivalent bilateral interbody cages were impacted for bilateral cases. Interbody cages primarily consisted of T-PAL and Concorde cages (DePuy Synthes, Raynham, MA, USA). Percutaneous pedicle screws were placed bilaterally over guide wires which were connected with rods and set screws.

4. Statistical Analysis

All calculations and statistical tests were performed using StataIC 16.1 (StataCorp., College Station, TX, USA). Patients were grouped according to whether they received unilateral or bilateral interbody cages. Demographics, prevalence of preoperative spinal pathologies, perioperative characteristics, and arthrodesis rates were compared between groups using chi-square and Student t-test for categorical and continuous variables, respectively.

Improvement in PROM scores (Δ) from preoperative baseline values were quantified at all postoperative timepoints. Preoperative PROM scores and Δ values were compared between groups using Student t-test. Achievement of MCID was determined by comparing Δ values to the following previously established thresholds: VAS back ≥ 2.2,15 VAS leg ≥ 5.0,15 ODI ≥ 8.2,15 SF-12 PCS ≥ 2.5,15 PROMIS-PF ≥ 4.5.16 The proportion of patients achieving MCID in each measure at each timepoint was assessed between groups using logistic regression. In order to account for significant baseline differences between groups, 1-way analysis of covariance (ANCOVA) and multiple logistic regression analyses were used to assess postoperative improvement and rates of MCID achievement, respectively, while accounting for effects of significant covariates. Significant covariates were considered as any baseline characteristics that significantly differed between groups, as well as preoperative values for respective PROMs. An α of 0.05 was set for all statistical tests.

RESULTS

A total of 151 patients were included with 111 receiving a unilateral cage and 40 receiving bilateral cages. The cohort's mean age was 52.1 years, 39.1% were female, and 49.0% were obese (BMI ≥ 30 kg/m²). Mean CCI score was significantly higher for the unilateral cage group (2.0 ± 1.5 vs. 1.2 ± 1.1, p = 0.003). Diabetes status and insurance/payment type were significantly associated with cage type (p = 0.041 and p = 0.010) (Table 1). No other demographic variable significantly differed between groups.

Degenerative spondylolisthesis was significantly more prevalent among the unilateral cage group (51.4% vs. 22.5%, p < 0.001), while isthmic spondylolisthesis was significantly more prevalent among the bilateral cage group (21.6% vs. 70.0%, p < 0.001) (Table 2). A majority of procedures in the unilateral group were

Table 1. Patient demographics

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Unilateral cage (n = 111)</th>
<th>Bilateral cages (n = 40)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>53.1 ± 11.4</td>
<td>49.2 ± 10.5</td>
<td>0.058</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45 (40.5)</td>
<td>14 (35.0)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>66 (59.5)</td>
<td>26 (65.0)</td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td>0.554</td>
</tr>
<tr>
<td>< 30</td>
<td>55 (49.6)</td>
<td>22 (55.0)</td>
<td></td>
</tr>
<tr>
<td>≥ 30</td>
<td>56 (50.5)</td>
<td>18 (45.0)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td>0.339</td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>93 (83.8)</td>
<td>36 (90.0)</td>
<td></td>
</tr>
<tr>
<td>Smoker</td>
<td>18 (16.2)</td>
<td>4 (10.0)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nondiabetic</td>
<td>95 (85.9)</td>
<td>39 (97.5)</td>
<td>0.041*</td>
</tr>
<tr>
<td>Diabetic</td>
<td>16 (14.4)</td>
<td>25 (1)</td>
<td></td>
</tr>
<tr>
<td>ASA PS classification grade</td>
<td>2.1 ± 0.5</td>
<td>2.0 ± 0.5</td>
<td>0.242</td>
</tr>
<tr>
<td>CCI score</td>
<td>2.0 ± 1.5</td>
<td>1.2 ± 1.1</td>
<td>0.003*</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td></td>
<td>0.010*</td>
</tr>
<tr>
<td>Medicare/medicaid</td>
<td>11 (9.9)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Workers’ compensation</td>
<td>45 (40.5)</td>
<td>10 (25.0)</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>55 (49.6)</td>
<td>30 (75.0)</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation or number (%). ASA PS, American Society of Anesthesiologists physical status; CCI, Charlson Comorbidity Index; SD, standard deviation. *p < 0.05, statistical significance.
performed at the L4/L5 level (53.2%) while most procedures in the bilateral group were at the L5/S1 level (75.0%), which represented a significant difference in distribution between groups (p = 0.003). Most patients in both groups received BMP-2 intraoperatively (87.4% unilateral, 85.0% bilateral) and the type of bone graft used did not significantly differ by group (p = 0.069). Postoperative length of stay was significantly longer for the unilateral cage group (56.3 ± 32.1 vs. 43.2 ± 21.8, p = 0.022). Neither operative duration (138.3 ± 33.3 vs. 143.2 ± 32.1, p = 0.429) nor EBL (64.0 ± 32.0 vs. 66.9 ± 51.4, p = 0.680) significantly differed between groups. All patients in the bilateral group demonstrated solid arthrodesis at 1-year follow-up, while a significantly lower proportion in the unilateral group had achieved fusion at the 1-year timepoint (100% vs. 89.0%, p = 0.035). In total, 12 patients underwent index-level revision procedures, all of whom were in the unilateral group. All patients with radiographically confirmed pseudoarthrosis subsequently underwent revision.

Table 2. Perioperative characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unilateral cage (n = 111)</th>
<th>Bilateral cages (n = 40)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal pathology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent herniated nucleus pulposus</td>
<td>2 (5.0)</td>
<td>2 (5.0)</td>
<td>0.517</td>
</tr>
<tr>
<td>Degenerative spondylolisthesis</td>
<td>24 (21.6)</td>
<td>28 (70.0)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Isthmic spondylolisthesis</td>
<td>20 (18.1)</td>
<td>22 (55.0)</td>
<td></td>
</tr>
<tr>
<td>Fusion level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3/L4</td>
<td>3 (2.7)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>L4/L5</td>
<td>59 (53.2)</td>
<td>10 (25.0)</td>
<td></td>
</tr>
<tr>
<td>L5/S1</td>
<td>49 (44.1)</td>
<td>30 (75.0)</td>
<td></td>
</tr>
<tr>
<td>Bone graft</td>
<td></td>
<td></td>
<td>0.069</td>
</tr>
<tr>
<td>BMP-2</td>
<td>97 (87.4)</td>
<td>34 (85.0)</td>
<td></td>
</tr>
<tr>
<td>Iliac crest bone graft</td>
<td>1 (0.9)</td>
<td>3 (7.5)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>13 (11.7)</td>
<td>3 (7.5)</td>
<td></td>
</tr>
<tr>
<td>Operative time (min)</td>
<td>138.3 ± 33.3</td>
<td>143.2 ± 32.1</td>
<td>0.429</td>
</tr>
<tr>
<td>Estimated blood loss (mL)</td>
<td>64.0 ± 32.0</td>
<td>66.9 ± 51.4</td>
<td>0.680</td>
</tr>
<tr>
<td>Length of stay (hr)</td>
<td>56.3 ± 32.1</td>
<td>43.2 ± 21.8</td>
<td>0.022*</td>
</tr>
<tr>
<td>Arthrodesis by 1 year†</td>
<td></td>
<td></td>
<td>0.035*</td>
</tr>
<tr>
<td>Nornunion</td>
<td>12 (11.0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Solid fusion</td>
<td>97 (89.0)</td>
<td>37 (100)</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as number (%) or mean ± standard deviation.

BMP-2, bone morphogenic protein-2.
*p < 0.05, statistical significance. †Other synthetic bone graft substitute local bone graft without the use of BMP-2 or iliac crest bone graft.
*Arthrodesis status was not able to be assessed for 5 patients due to unavailable postoperative computed tomography scans.

Table 3. Patient-reported outcomes

<table>
<thead>
<tr>
<th>PROM</th>
<th>Unilateral cage</th>
<th>Bilateral cages</th>
<th>p-value*</th>
<th>p-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS back</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>6.8 ± 2.1</td>
<td>6.8 ± 2.4</td>
<td>0.932</td>
<td></td>
</tr>
<tr>
<td>6 Weeks (Δ)</td>
<td>2.8 ± 2.7</td>
<td>2.4 ± 3.4</td>
<td>0.487</td>
<td>0.551</td>
</tr>
<tr>
<td>12 Weeks (Δ)</td>
<td>3.0 ± 2.8</td>
<td>3.6 ± 3.0</td>
<td>0.282</td>
<td>0.888</td>
</tr>
<tr>
<td>6 Months (Δ)</td>
<td>3.2 ± 2.9</td>
<td>4.0 ± 3.1</td>
<td>0.226</td>
<td>0.277</td>
</tr>
<tr>
<td>1 Year (Δ)</td>
<td>3.1 ± 2.4</td>
<td>3.9 ± 3.1</td>
<td>0.352</td>
<td>0.412</td>
</tr>
<tr>
<td>2 Years (Δ)</td>
<td>3.7 ± 3.1</td>
<td>2.9 ± 4.6</td>
<td>0.606</td>
<td>0.212</td>
</tr>
<tr>
<td>ODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>45.1 ± 17.2</td>
<td>39.6 ± 15.6</td>
<td>0.145</td>
<td></td>
</tr>
<tr>
<td>6 Weeks (Δ)</td>
<td>7.9 ± 17.4</td>
<td>4.9 ± 21.7</td>
<td>0.511</td>
<td>0.259</td>
</tr>
<tr>
<td>12 Weeks (Δ)</td>
<td>13.2 ± 16.3</td>
<td>17.4 ± 17.8</td>
<td>0.296</td>
<td>0.615</td>
</tr>
<tr>
<td>6 Months (Δ)</td>
<td>17.5 ± 15.3</td>
<td>18.3 ± 22.2</td>
<td>0.888</td>
<td>0.930</td>
</tr>
<tr>
<td>1 Year (Δ)</td>
<td>19.0 ± 17.5</td>
<td>18.4 ± 14.6</td>
<td>0.915</td>
<td>0.412</td>
</tr>
<tr>
<td>2 Years (Δ)</td>
<td>25.8 ± 23.5</td>
<td>8.2 ± 29.6</td>
<td>0.118</td>
<td>0.026*</td>
</tr>
<tr>
<td>SF-12 PCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>30.0 ± 9.0</td>
<td>34.9 ± 12.4</td>
<td>0.045*</td>
<td></td>
</tr>
<tr>
<td>6 Weeks (Δ)</td>
<td>9.0 ± 9.4</td>
<td>-0.4 ± 8.4</td>
<td>0.642</td>
<td>0.666</td>
</tr>
<tr>
<td>12 Weeks (Δ)</td>
<td>7.2 ± 9.4</td>
<td>10.8 ± 11.4</td>
<td>0.307</td>
<td>0.611</td>
</tr>
<tr>
<td>6 Months (Δ)</td>
<td>9.8 ± 12.0</td>
<td>12.9 ± 12.4</td>
<td>0.469</td>
<td>0.663</td>
</tr>
<tr>
<td>1 Year (Δ)</td>
<td>13.6 ± 9.8</td>
<td>9.8 ± 8.3</td>
<td>0.212</td>
<td>0.170</td>
</tr>
<tr>
<td>2 Years (Δ)</td>
<td>11.9 ± 11.3</td>
<td>7.4 ± 11.1</td>
<td>0.289</td>
<td>0.253</td>
</tr>
<tr>
<td>PROMIS-PF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>34.0 ± 5.6</td>
<td>37.0 ± 4.7</td>
<td>0.165</td>
<td></td>
</tr>
<tr>
<td>6 Weeks (Δ)</td>
<td>1.4 ± 5.3</td>
<td>-0.2 ± 6.2</td>
<td>0.556</td>
<td>0.108</td>
</tr>
<tr>
<td>12 Weeks (Δ)</td>
<td>2.9 ± 6.7</td>
<td>7.4 ± 5.5</td>
<td>0.120</td>
<td>0.434</td>
</tr>
<tr>
<td>6 Months (Δ)</td>
<td>8.5 ± 9.2</td>
<td>11.2 ± 5.0</td>
<td>0.469</td>
<td>0.436</td>
</tr>
<tr>
<td>1 Year (Δ)</td>
<td>7.2 ± 5.4</td>
<td>13.8 ± 8.6</td>
<td>0.091</td>
<td>0.423</td>
</tr>
<tr>
<td>2 Years (Δ)</td>
<td>3.7 ± 4.0</td>
<td>13.7 ± 4.4</td>
<td>0.001*</td>
<td>0.060</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation.

PROM, Patient-Reported Outcome Measures; VAS, visual analogue scale; ODI, Oswestry Disability Index; SF-12 PCS, 12-item Short Form health survey physical composite score; PROMIS-PF, Patient-Reported Outcome Measurement Information System physical function.

*p < 0.05, statistical significance. †p-values calculated using Student t-test to compare mean preoperative scores and mean postoperative improvement between groups. ‡p-values calculated using 1-way analysis of covariance to compare mean postoperative improvement between groups while accounting for significant covariates.
procedures. Of these patients with pseudoarthrosis, 3 demonstrated significant concomitant subsidence. No additional incidences of index-level revision or clinically significant subsidence were observed.

Table 4. Achievement of MCID

<table>
<thead>
<tr>
<th>PROM</th>
<th>Unilateral cage</th>
<th>Bilateral cages</th>
<th>OR (95% CI)</th>
<th>p-value†</th>
<th>p-value‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS back</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>54 (55.1)</td>
<td>160 (50.0)</td>
<td>0.8 (0.4–1.8)</td>
<td>0.615</td>
<td>0.662</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>49 (55.7)</td>
<td>20 (62.5)</td>
<td>1.3 (0.6–3.0)</td>
<td>0.505</td>
<td>0.749</td>
</tr>
<tr>
<td>6 Months</td>
<td>53 (63.9)</td>
<td>19 (67.9)</td>
<td>1.2 (0.5–3.0)</td>
<td>0.701</td>
<td>0.510</td>
</tr>
<tr>
<td>1 Year</td>
<td>15 (62.5)</td>
<td>12 (66.7)</td>
<td>1.2 (0.3–4.3)</td>
<td>0.780</td>
<td>0.226</td>
</tr>
<tr>
<td>2 Years</td>
<td>9 (60.0)</td>
<td>6 (60.0)</td>
<td>1.0 (0.2–5.2)</td>
<td>0.999</td>
<td>0.996</td>
</tr>
<tr>
<td>Overall</td>
<td>73 (73.0)</td>
<td>26 (74.3)</td>
<td>1.1 (0.4–2.6)</td>
<td>0.882</td>
<td>0.208</td>
</tr>
<tr>
<td>VAS leg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>16 (36.4)</td>
<td>9 (30.0)</td>
<td>0.8 (0.3–2.0)</td>
<td>0.570</td>
<td>0.943</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>14 (32.6)</td>
<td>8 (26.7)</td>
<td>0.8 (0.3–2.1)</td>
<td>0.590</td>
<td>0.428</td>
</tr>
<tr>
<td>6 Months</td>
<td>13 (32.5)</td>
<td>5 (18.5)</td>
<td>0.5 (0.1–1.5)</td>
<td>0.210</td>
<td>0.361</td>
</tr>
<tr>
<td>1 Year</td>
<td>9 (37.5)</td>
<td>4 (21.1)</td>
<td>0.4 (0.2–1.8)</td>
<td>0.249</td>
<td>0.020*</td>
</tr>
<tr>
<td>2 Years</td>
<td>4 (33.3)</td>
<td>3 (27.3)</td>
<td>0.8 (0.1–4.5)</td>
<td>0.753</td>
<td>-</td>
</tr>
<tr>
<td>Overall</td>
<td>26 (57.8)</td>
<td>110 (33.3)</td>
<td>0.4 (0.1–0.9)</td>
<td>0.035*</td>
<td>0.077</td>
</tr>
<tr>
<td>ODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>22 (46.8)</td>
<td>14 (46.7)</td>
<td>1.0 (0.4–2.5)</td>
<td>0.990</td>
<td>0.219</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>26 (59.1)</td>
<td>21 (70.0)</td>
<td>1.6 (0.6–4.3)</td>
<td>0.340</td>
<td>0.892</td>
</tr>
<tr>
<td>6 Months</td>
<td>31 (75.6)</td>
<td>20 (74.1)</td>
<td>0.9 (0.3–2.8)</td>
<td>0.886</td>
<td>0.573</td>
</tr>
<tr>
<td>1 Year</td>
<td>16 (64.0)</td>
<td>14 (73.7)</td>
<td>1.6 (0.4–5.8)</td>
<td>0.496</td>
<td>0.962</td>
</tr>
<tr>
<td>2 Years</td>
<td>9 (69.3)</td>
<td>8 (72.7)</td>
<td>1.2 (0.2–7.0)</td>
<td>0.851</td>
<td>0.544</td>
</tr>
<tr>
<td>Overall</td>
<td>39 (81.3)</td>
<td>27 (79.4)</td>
<td>0.9 (0.3–2.7)</td>
<td>0.836</td>
<td>0.699</td>
</tr>
<tr>
<td>SF-12 PCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>9 (42.9)</td>
<td>8 (42.1)</td>
<td>1.0 (0.3–3.4)</td>
<td>0.962</td>
<td>0.898</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>11 (57.9)</td>
<td>13 (72.2)</td>
<td>1.9 (0.5–7.5)</td>
<td>0.364</td>
<td>0.835</td>
</tr>
<tr>
<td>6 Months</td>
<td>15 (75.0)</td>
<td>11 (73.3)</td>
<td>0.9 (0.2–4.2)</td>
<td>0.911</td>
<td>0.745</td>
</tr>
<tr>
<td>1 Year</td>
<td>18 (85.7)</td>
<td>15 (79.0)</td>
<td>0.6 (0.1–3.2)</td>
<td>0.576</td>
<td>0.850</td>
</tr>
<tr>
<td>2 Years</td>
<td>12 (75.0)</td>
<td>9 (69.2)</td>
<td>0.8 (0.1–3.8)</td>
<td>0.730</td>
<td>0.796</td>
</tr>
<tr>
<td>Overall</td>
<td>25 (80.7)</td>
<td>22 (84.6)</td>
<td>1.3 (0.3–5.3)</td>
<td>0.695</td>
<td>0.807</td>
</tr>
<tr>
<td>PROMIS-PF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>3 (37.5)</td>
<td>3 (25.0)</td>
<td>0.6 (0.1–3.9)</td>
<td>0.552</td>
<td>0.995</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>3 (42.9)</td>
<td>10 (76.9)</td>
<td>4.4 (0.6–32.1)</td>
<td>0.139</td>
<td>0.878</td>
</tr>
<tr>
<td>6 Months</td>
<td>3 (50.0)</td>
<td>8 (88.9)</td>
<td>8.0 (0.6–110.3)</td>
<td>0.120</td>
<td>0.149</td>
</tr>
<tr>
<td>1 Year</td>
<td>5 (71.4)</td>
<td>10 (90.9)</td>
<td>4.0 (0.3–55.5)</td>
<td>0.301</td>
<td>0.585</td>
</tr>
<tr>
<td>2 Years</td>
<td>3 (50.0)</td>
<td>8 (100)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overall</td>
<td>7 (77.8)</td>
<td>14 (87.5)</td>
<td>2.0 (0.2–17.3)</td>
<td>0.529</td>
<td>0.460</td>
</tr>
</tbody>
</table>

Values are presented as number (%).

MCID, minimum clinically important difference; PROM, Patient-Reported Outcome Measures; OR, odds ratio; CI, confidence interval; VAS, visual analogue scale; ODI, Oswestry Disability Index; SF-12 PCS, 12-item Short Form health survey physical composite score; PROMIS-PF, Patient-Reported Outcome Measurement Information System physical function.

* p<0.05, statistical significance. † p-values calculated using logistic regression to assess rates of MCID achievement between groups. ‡ p-values calculated using multiple logistic regression to assess rates of MCID achievement between groups while accounting for significant covariates.
Preoperatively, VAS leg (6.1 ± 2.5 vs. 4.6 ± 3.2, p = 0.017), SF-12 PCS (30.0 ± 9.0 vs. 34.9 ± 12.4, p = 0.045) were significantly worse for the unilateral cage group (Table 3). Preoperative VAS back, ODI, and PROMIS-PF scores did not significantly differ between groups (all p > 0.05). Student t-test determined that postoperative Δ values were greater only for the bilateral group in PROMIS-PF at 2 years (3.7 ± 4.0 vs. 13.7 ± 4.4, p = 0.001), but did not significantly differ between groups for any other PROM at any timepoint (all p > 0.05). One-way ANCOVA revealed that when significant covariates were accounted for, improvement in ODI at 2 years was significantly greater for the unilateral group (25.8 ± 23.5 vs. 8.2 ± 29.6, p = 0.026). A majority of patients achieved an MCID overall for each PRO, with the exception of VAS leg for the bilateral group. Simple logistic regression demonstrated a significantly greater MCID achievement rate in the unilateral group only for overall VAS leg (57.8% vs. 33.3%, p = 0.035). Multiple logistic regression revealed that when significant covariates were accounted for, unilateral cage placement significantly predicted greater achievement rates for VAS leg at 1 year (p = 0.020) (Table 4).

DISCUSSION

MIS TLIF has a strong record of achieving favorable clinical outcomes while minimizing disruption of paraspinal musculature and surrounding structures. Although a number of aspects and variations of the TLIF procedure have been described, literature regarding the use of unilateral or bilateral interbody cages is limited. A few studies have examined immediate perioperative outcomes or biomechanical differences, however, most of these have not adequately controlled for the role of posterior instrumentation. Furthermore, the association of interbody cage placement with PROs has not been thoroughly assessed. The present study compared achievement of MCID in a number of PROs based on the use of unilateral or bilateral cage placement in a cohort of patients undergoing MIS TLIF with unilateral pedicle screw instrumentation.

The topic of interbody cage placement and architecture is complex and multifaceted. Lee et al. conducted a biomechanical study of 3 different cage conditions in a cadaveric PLIF model and determined that 2 cages placed bilaterally achieved greater stability and decreased stress compared with single cage techniques. Wang and Guo performed a similar study of 3 interbody cage techniques in a biomechanical model of physiological loading and vibration following TLIF. The authors reported that unilateral cages may be associated with increased risk of cage failure or adjacent segment degeneration, while the crescent shaped cage imparted increased stability and potentially decreased subsidence risk. However, neither Lee et al. nor Wang and Guo included the use of posterior fixation constructs in their cadaveric models of the spine. Posterior instrumentation has been demonstrated to have a number of significant effects on the outcomes of TLIF procedures, including segmental stability and endplate stress. This discrepancy is addressed by Aoki et al., who utilized a cadaveric finite element model of the lumbar spine to explore the biomechanical effects of a variety of combinations of unilateral, bilateral, or crescent shaped cages with either unilateral or pedicle screw instrumentation for single-level TLIF. Their main conclusion was that bilateral pedicle screw fixation provides superior spinal stability compared with unilateral posterior instrumentation. Interestingly, Aoki et al. concluded that neither cage shape nor number significantly affected segmental stability when accompanied by bilateral posterior instrumentation, as was used in our cohort.

Preoperatively, there were several important differences between groups in our cohort. Of particular note, most patients receiving unilateral cages had a diagnosis of degenerative spondylolisthesis, while isthmic spondylolisthesis was the prevailing spinal diagnosis among patients receiving bilateral cages. Massel et al. have previously published on a similar trend, noting a unilateral approach for patients with degenerative spondylolisthesis or grade I isthmic spondylolisthesis and bilateral cage placement for patients with grade II isthmic spondylolisthesis. In spite of the potentially more complex pathology among the patients receiving bilateral cage placement, they noted no difference in VAS back improvement through 6-months postoperative, nor in rates of fusion, revision, blood loss, or length of stay. An additional study by Massel et al. directly comparing grade I and grade II isthmic spondylolisthesis with the same division by cage placement likewise demonstrated no significant differences in the above outcomes. Importantly, all patients in both studies by Massel et al. underwent bilateral posterior instrumentation.

Aoki et al. performed a randomized clinical trial of 50 TLIF patients assigned to receive either unilateral cage placement with unilateral pedicle screw instrumentation or bilateral cages with bilateral pedicle screws. The investigators demonstrated that while the unilateral group experienced shorter operative durations and less blood loss, they also reported significantly less improvement in leg pain (as measured by VAS leg) and numbness following their procedures. Aside from these findings, Aoki et al. reported no significant differences in back pain...
(VAS back or JOA back pain) or fusion rates between groups. While the prospective, randomized nature of their study is compelling, as with many other previous studies, interpretation of Aoki et al.’s results regarding cage placement may be confounded by the choice of unilateral vs bilateral pedicle screw instrumentation. This factor is especially important to account for as it has been shown to independently affect postoperative outcomes in lumbar fusion.11,13,21 A systematic review and meta-analysis by Ren et al.,13 as well as a randomized clinical trial by Choi et al.,21 comparing unilateral and bilateral pedicle screw instrumentation for TLIF procedures both demonstrated significantly lower rates of fusion with unilateral posterior instrumentation. Furthermore, the finite element model of Ambati et al.,11 demonstrated decreased stability among lumbar fusion constructions using unilateral instrumentation. Our study controlled for the effects of posterior instrumentation by including only patients who received placement of bilateral pedicle screws. Given this important methodological distinction, our results differed from that of Aoki et al.7 in several ways. First, we observed no significant differences in EBL or operative duration, likely due to the use of uniform posterior instrumentation procedures, regardless of cage placement. However, we did observe that patients who received unilateral cages had significantly longer postoperative stays. This may be interpreted as a result of differences in cage placement or may be related to the increased comorbidity burden observed in the unilateral cage group. In terms of PROMs, unlike Aoki et al.,7 patients in our study demonstrated minimal differences in postoperative improvement based on their cage status. However, after accounting for significant covariates, we did observe greater rates of MCID achievement for VAS leg at 1 year among the unilateral cage group. These observed differences could potentially be related to the significantly more severe leg pain observed preoperatively among the unilateral group. While we did take measures to statistically account for these differences, the worse baseline leg pain among the unilateral group may have allowed these patients greater “room” to improve. A previous study by Jenkins et al.,22 concluded that, for patients undergoing MIS TLIF, postoperative physical function, as measured by PROMIS-PF, was significantly more strongly correlated with VAS back scores than VAS leg. This conclusion may help explain the minimal differences in overall physical health improvement in spite of transient differences in leg pain. Based on more global trends in PROM values, our results suggest that patients may perceive similar levels of improvement with the use of a unilateral cage compared to bilateral.

However, we did observe one significant difference between groups that was not demonstrated in cohort of Aoki et al.7 Specifically, all patients that received bilateral cages had demonstrated solid fusion by the 1-year timepoint, while only 89.0% of patients that received unilateral cages were fused at this timepoint. Perhaps the most straightforward explanation for this difference in fusion rates is decreased segmental stability or increased range of motion with a unilateral cage. However, the results of biomechanical analysis of Ambati et al.,11 demonstrated similar stability between unilateral and bilateral cages when accompanied by bilateral pedicle screw instrumentation. Another possible contribution to differences in rates of arthrodesis is the incidence of cage subsidence, as both implant type/shape and position have been demonstrated as risk factors for the complication.23,24 This may be a less likely scenario, but a possibility nonetheless, as only 3 patients underwent an index-level revision procedure due to pseudarthrosis with concomitant cage subsidence. Our results regarding fusion rates are especially interesting considering the lack of significant difference observed in MCID achievement, implying that patients reported similar improvements in spite of these differing arthrodesis rates. Additional high-quality studies of radiographic and biomechanical outcomes to study the clinical effects of cage placement while controlling for posterior instrumentation may be necessary to fully elucidate the mechanism of these observed differences.

To our knowledge, this is the first study to comprehensively explore the effects of unilateral versus bilateral cage placement on MCID achievement following TLIF procedures while controlling for posterior instrumentation. However, the present study is not without limitations. All procedures were performed by a single surgeon at a single academic institution, which may limit the generalizability of our findings to other providers and patients. Furthermore, self-reported data such as PROMs are inherently prone to recall bias, non-response bias, and other potentially confounding effects. Nonetheless, quantifying these patient perceptions is vital to understanding postoperative outcomes in a clinically relevant, patient-centered manner. Finally, limited response rates at long-term follow-ups may have limited our ability to detect statistical effects at these more longitudinal timepoints.

CONCLUSION

Among patients undergoing MIS TLIF with bilateral pedicle screw instrumentation, minimal differences were observed in terms of blood loss, operative duration, or PROs based on the use of unilateral versus bilateral interbody cages. Specifically,
patients achieved a clinically important difference in pain, disability, and physical function at similar rates regardless of cage placement. However, all patients receiving bilateral cage placement had demonstrated solid fusion by 1 year, while the rate of fusion was significantly lower for patients receiving unilateral cage placement.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

Objective: To assess change in Patient-Reported Outcome Measures (PROM) as predictors for revision lumbar decompression (LD).

Methods: Patients who underwent primary, single or multilevel LD were retrospectively reviewed. Patients were categorized according to whether or not they underwent revision LD within 2 years of the primary procedure. Visual analogue scale (VAS), Oswestry Disability Index (ODI), 12-item Short Form Health Survey and 12-item Veterans RAND physical component score (SF-12 PCS and VR-12 PCS), and Patient-Reported Outcome Measurement Information System physical function (PROMIS-PF) were recorded. Delta PROM scores were evaluated for differences between groups and as a risk factor for a revision LD.

Results: The study included 135 patients, 91 undergoing a primary procedure only and 44 undergoing a primary and revision procedure. Matched patients did not demonstrate any significant differences in demographics or perioperative characteristics. Patients who underwent a revision had a mean time to revision of 7.4 ± 5.7 months. Primary cohort significantly improved for all PROMs (all p < 0.05), while the primary plus revision cohort significantly improved for VAS back, ODI, and PROMIS-PF (all p < 0.05). However, cohorts differed in VAS back and PROMIS-PF (p < 0.05). Delta PROMs were not a significant risk factor for revision except at 6 months for PROMIS-PF (p = 0.024).

Conclusion: LD has been associated with reliable outcomes, but early identification of patients at risk for revision is critical. This study suggests that tools such as PROMIS-PF may serve a role in predicting who is at risk and the 6-month follow-up period may be valuable for counseling patients who are not experiencing improvement.

Keywords: Lumbar vertebrae, Decompression, Patient-Reported Outcome Measures

INTRODUCTION

Minimally invasive lumbar decompression (MIS LD) is an effective treatment option for individuals experiencing degenerative spinal pathologies such as lumbar stenosis. Although its minimally invasive nature and proven efficacy make it a desirable procedure for individuals that have failed conservative management, complications and persistent symptoms following MIS LD may require some patients to undergo a revision procedure. Significant efforts should be made to avoid repeat lumbar surgeries, as prior studies have demonstrated revision lumbar procedures to be associated with higher complication rates and worse outcomes than primary surgical intervention. Provietti et al. demonstrated revision cases had a higher rate of infection and unintended durotomy compared to primary procedures. Additionally, Singh et al. reported revision lumbar discectomy patients had higher postoperative narcotic utilization, prolonged hospital stay, and higher postoperative pain scores at 6 weeks. Therefore, it is critical to identify possible predictors of revision procedures in an attempt to modify risk factors and counsel those at risk.

Identifying predictors can serve as an effective way to proac-
tively determine individuals likely to require revision surgery following MIS LD, thus avoiding a second surgery and the negative outcomes associated with it. Several past studies of the lumbar spine have established various predictors of revision, most of which focus on an individual’s pathological diagnoses or radiographic imaging. Hwang et al.² and Deyo et al.³ identified moderate disk degeneration in lower lumbar segments and history of a lumbar procedure prior to the index operation to be strong clinical predictors of reoperation following surgery for lumbar spinal stenosis. Additionally, Abdul Jalil et al.⁷ used preoperative magnetic resonance imagings to identify presence of retrolisthesis or foraminal disc herniation to be predictive of higher risk for revision following lumbar discectomy. While these results provide meaningful insight, it is critical to look beyond objective diagnoses and work to identify additional predictors that include a patient’s own perception of their health and well-being.

Patient-Reported Outcome Measures (PROMs) are self-reported questionnaires that allow clinicians to understand a patient’s perception of their own pain, disability, and physical function.⁸ PROMs have become increasingly relied on to quantify postoperative outcomes and define the success of surgery, making it important to determine whether or not they can also be used for identifying patients at risk for revision surgery. Due to the lack of literature focusing on PROMs in this context, our study aims to quantify differences in the incremental changes of PROMs following a primary MIS LD between patients who did or did not subsequently undergo revision surgery. It is critical to understand this relationship, as we would expect patients requiring a future revision to have a significantly different postoperative course regarding improvement in postoperative outcomes. Using PROMs specific for pain, disability, and physical function, we hypothesize that patients that undergo subsequent revision MIS LD procedures will experience less improvement in PROMs between postoperative timepoints than those patients that do not undergo a revision procedure.

MATERIALS AND METHODS

1. Inclusion Exclusion Criteria

Eligible study participants were identified through a retrospective review of a prospective single surgeon database for spinal procedures performed at a single academic medical institution between May 2008 and January 2020. Inclusion criteria were set as patients undergoing primary, elective, single, or multilevel MIS LD for a degenerative spinal pathology. Exclusion criteria were set as patients undergoing surgery for trauma, infection, or malignancy, or a revision procedure greater than 2 years after their primary MIS LD procedure. All aspects of the current study were approved by the Institutional Review Board of Rush University Medical Center (ORA 14051301) and all participants provided written informed consent prior to commencement of the study.

Patients were categorized into 2 groups: those who underwent only a primary procedure and those who underwent both a primary and subsequent revision procedure within 2 years of the primary surgery. All surgeries, primary and revision, were performed using either a microscopic or microtubular approach and included laminectomy, hemilaminectomy, discectomy, foraminotomy, or facetectomy. All revision decompression surgeries involved the same level of the primary decompression.

2. Data Collection

Demographic information and perioperative characteristics were collected through a retrospective review. Demographic information included age, self-identified gender, body mass index (BMI), active smoker status, diabetic status, and insurance collected. Additionally, appropriateness for surgery and comorbidity burden were recorded and collected using the American Society of Anesthesiologists physical status classification and Charlson Comorbidity Burden, respectively. Perioperative information included associated preoperative spinal pathology, number of operative levels, operative duration, intraoperative estimated blood loss (EBL), postoperative length of stay (LOS), and time to revision procedure.

The primary outcome of interest was PROMs which were evaluated using the visual analogue scale (VAS), Oswestry Disability Index (ODI), 12-item Short Form and Veterans RAND physical composite score (SF-12 PCS and VR-12 PCS), and Patient-Reported Outcome Measurement Information System physical function (PROMIS-PF). All outcome measures were collected at a baseline preoperative timepoint and subsequently at 6 weeks, 12 weeks, 6 months, and 1 year postoperatively following the primary procedure. If a patient were to undergo revision surgery within 2 years of the primary, their subsequent PROMs following the primary procedure were not included in analysis. For example, a patient in the primary plus revision cohort who underwent the revision procedure at 9 months from the primary procedure would not have a 1-year PROM included in analysis. Change in PROMs between consecutive timepoints was calculated as follows: Delta (Δ) = [timepoint 1 value – timepoint 2 value].
3. Statistical Analysis

As previously described, patients were divided and analyzed in 2 cohorts; those who underwent only a primary procedure and patients who underwent both a primary and subsequent revision procedure. To control for significant differences in demographic variables between groups, a propensity score was calculated for all patients and a nearest neighbor match performed. Patients were matched based on age, sex, BMI, smoker, and diabetic status. Unmatched patients were excluded from analysis. Following propensity score matching, groups were evaluated for differences in demographics, perioperative characteristics using chi-square test for categorical variables and an unpaired Student t-test for continuous variables. PROM scores associated with the primary procedure that were collected after the date of revision of index-level surgery were excluded from analysis. As such, delta PROM comparisons were ensured to be between primary cohort and primary plus revision cohort for each index operation without factoring in PROM scores taking place after revision procedure. Groups were evaluated for significant differences in PROM score improvements from their respective baseline value using a paired Student t-test and any differences in PROM scores between groups were evaluated at each timepoint using an unpaired Student t-test. To evaluate delta PROM values between timepoints as a predictor of undergoing an MIS LD revision, a simple logistic regression was performed. All statistical tests and analyses were performed using StataIC 16.1 (StataCorp, College Station, TX, USA) and an alpha value was set to 0.050 to reject the null hypothesis.

RESULTS

A total of 135 propensity score matched patients were included in the final study cohort with 91 undergoing only a revision procedure and 44 having undergone a revision procedure. The cohort had a mean age of 42.7 years with majority (75.8%) being male and nonobese (BMI < 30 kg/m²). The 2 cohorts did not demonstrate any significant differences in baseline characteristics (Table 1). Majority of patients were associated with a preoperative spinal pathology of herniated nucleus pulposus (70.0%) and underwent a procedure at a single level (73.8%). Mean operative duration was 55.2 minutes with an associated EBL of 55.8 mL and LOS of 11.4 hours. Mean time to revision was 7.4 months.

Comparison of perioperative characteristics between groups did not demonstrate significant differences (Table 2). Table 3 summarizes mean PROM scores by group. Patients who underwent a primary procedure demonstrated significant improvements in VAS back, ODI, and PROMIS-PF from baseline values at 6-week, 12-week, and 6-month follow-up (p ≤ 0.050, all). Similarly, improvement from baseline values was demonstrated at the 6-week and 12-week timepoint for both VAS leg and VR-12 PCS (p ≤ 0.003, all). Patients who underwent both a primary and revision procedure demonstrated significant improvements in VAS back (6 weeks, 12 weeks, and 1 year) (p ≤ 0.002, all), ODI (6 weeks and 12 weeks) (p ≤ 0.035), and PROMIS-PF (6 weeks and 12 weeks) (p ≤ 0.028) when compared to preoperative PROM score prior to index operation. Comparison of mean PROM scores between groups demonstrated significantly worse values for VAS back and PROMIS-PF at the preoperative timepoint for patients who underwent both pri-

Table 1. Propensity matched demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (n = 135)</th>
<th>Primary only (n = 91)</th>
<th>Primary+ revision (n = 44)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>42.7 ± 15.0</td>
<td>42.3 ± 14.7</td>
<td>43.6 ± 15.8</td>
<td>0.652</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0.315</td>
</tr>
<tr>
<td>Female</td>
<td>32 (24.2)</td>
<td>19 (21.6)</td>
<td>13 (29.5)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>100 (75.8)</td>
<td>69 (78.4)</td>
<td>31 (70.4)</td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td>0.533</td>
</tr>
<tr>
<td>< 30</td>
<td>77 (58.3)</td>
<td>53 (60.2)</td>
<td>24 (54.5)</td>
<td></td>
</tr>
<tr>
<td>≥ 30</td>
<td>55 (41.7)</td>
<td>35 (39.8)</td>
<td>20 (45.5)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td>0.869</td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>100 (83.3)</td>
<td>73 (82.9)</td>
<td>37 (84.1)</td>
<td></td>
</tr>
<tr>
<td>Smoker</td>
<td>22 (16.7)</td>
<td>15 (17.1)</td>
<td>7 (15.9)</td>
<td></td>
</tr>
<tr>
<td>Diabetic status</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Nondiabetic</td>
<td>120 (90.9)</td>
<td>80 (90.9)</td>
<td>40 (90.9)</td>
<td></td>
</tr>
<tr>
<td>Diabetic</td>
<td>12 (9.1)</td>
<td>8 (9.1)</td>
<td>4 (9.1)</td>
<td></td>
</tr>
<tr>
<td>ASA PS classification</td>
<td></td>
<td></td>
<td></td>
<td>0.880</td>
</tr>
<tr>
<td>≤ 2</td>
<td>93 (89.4)</td>
<td>57 (89.1)</td>
<td>36 (90.0)</td>
<td></td>
</tr>
<tr>
<td>> 2</td>
<td>11 (10.6)</td>
<td>7 (10.9)</td>
<td>4 (10.0)</td>
<td></td>
</tr>
<tr>
<td>CCI score</td>
<td></td>
<td></td>
<td></td>
<td>0.892</td>
</tr>
<tr>
<td>< 1</td>
<td>58 (50.4)</td>
<td>39 (50)</td>
<td>19 (51.3)</td>
<td></td>
</tr>
<tr>
<td>≥ 1</td>
<td>57 (49.6)</td>
<td>39 (50)</td>
<td>18 (48.7)</td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td></td>
<td></td>
<td>0.869</td>
</tr>
<tr>
<td>Medicare/medicaid</td>
<td>10 (7.6)</td>
<td>7 (7.9)</td>
<td>3 (6.8)</td>
<td></td>
</tr>
<tr>
<td>Workers’ compensation</td>
<td>47 (35.6)</td>
<td>30 (34.1)</td>
<td>17 (38.6)</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>75 (56.8)</td>
<td>51 (58)</td>
<td>24 (54.6)</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation or number (%). ASA PS, American Society of Anesthesiologists physical status; CCI, Charlson Comorbidity Index.
*p-value was calculated using chi-square or t-test.
mary and revision procedures (p ≤ 0.020, both). Additionally, these patients also demonstrated significantly worse PROMIS-PF scores at the 6-week and 6-month timepoint (p ≤ 0.032, both).

Δ values for VAS back, VAS leg, ODI, SF-12 PCS, and VR-12 PCS at all postoperative timepoints were not significant predictors for undergoing a revision procedure (Table 4). A similar observation was made for ΔPROMIS-PF at all timepoints except for 6 months (p = 0.024). Preoperative PROM scores for index operation and subsequent revision operation for patients in primary+revision cohort were not significantly different from one another (Table 5).

DISCUSSION

The timely identification of patients at risk for requiring revision LD surgery is valuable, but unfortunately has remained a challenge for care providers. Prior research has suggested that several demographic and surgical factors may be associated with a higher likelihood of revision surgery, including younger age, male sex, and positive smoking status. Similar studies have also shown that revision surgery is frequently associated with a lesser degree of improvement in patient-reported outcomes (PROs). However, there has been a paucity of literature examining the relationship between PROs following the primary surgery, and the likelihood of subsequent revision surgery. Although PROs as a predictor of revision have been analyzed in trauma surgery and total joint arthroplasty, the potential association has yet to be explored in spine surgery.

In the present study, we sought to analyze the relationship between both the absolute and change in PROMs for patients who underwent primary LD alone versus primary and revision LD within 2 years. Following the primary surgery, there were no significant differences between postoperative absolute and change in VAS, ODI, SF-12 PCS, or VR-12 PCS scores. The 2 cohorts did however have significant differences in absolute PROMIS physical function scores at 6 weeks, 6 months, and 1 year postoperative from the primary procedure, with the primary plus revision cohort reporting worse scores at each time point. Similarly, the degree of improvement in PROMIS-PF scores at 6-month follow-up was significantly smaller for the primary plus revision cohort.

These findings suggest that although legacy metrics such as VAS and ODI may not be as predictive as demographic and surgical factors for the likelihood of revision surgery, the PROMIS-PF assessment may play a unique and valuable role in identifying patients at risk for requiring revision surgery. The PROMIS system offers a computer-based, efficient, flexible, and precise tool that may carry distinct advantages compared to previously utilized PRO assessment tools. In fact, PROMIS-PF has been shown to outperform the ODI and 36-item Short Form Health Survey in the spine patient population in its ability to provide a more accurate measure of function, while taking less time to administer and fewer questions to answer. It is therefore feasible that PROMIS-PF may be more accurately illustrating the postoperative experience, and therefore providing a more reliable indicator of the likelihood of revision surgery.
Table 3. PROM scores for lumbar decompression patients

<table>
<thead>
<tr>
<th>PROM</th>
<th>Primary only</th>
<th>p-value<sup>†</sup></th>
<th>Primary+revision</th>
<th>p-value<sup>‡</sup></th>
<th>p-value<sup>‡</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS back</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>6.8 ± 2.3 (71)</td>
<td>-</td>
<td>5.7 ± 2.6 (36)</td>
<td>-</td>
<td>0.020*</td>
</tr>
<tr>
<td>6 Weeks</td>
<td>3.2 ± 2.8 (63)</td>
<td>< 0.001*</td>
<td>3.6 ± 2.5 (29)</td>
<td>< 0.001*</td>
<td>0.523</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>3.5 ± 3.0 (30)</td>
<td>< 0.001*</td>
<td>2.6 ± 2.8 (17)</td>
<td>< 0.001*</td>
<td>0.303</td>
</tr>
<tr>
<td>6 Months</td>
<td>3.7 ± 2.4 (12)</td>
<td>0.004*</td>
<td>4.3 ± 3.4 (20)</td>
<td>0.094</td>
<td>0.653</td>
</tr>
<tr>
<td>1 Year</td>
<td>3.6 ± 3.8 (5)</td>
<td>0.196</td>
<td>3.9 ± 3.4 (9)</td>
<td>0.002</td>
<td>0.869</td>
</tr>
<tr>
<td>VAS leg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>6.3 ± 2.8 (43)</td>
<td>-</td>
<td>6.1 ± 3.6 (22)</td>
<td>-</td>
<td>0.823</td>
</tr>
<tr>
<td>6 Weeks</td>
<td>2.8 ± 3.0 (37)</td>
<td>< 0.001*</td>
<td>3.3 ± 2.9 (16)</td>
<td>0.079</td>
<td>0.573</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>3.4 ± 3.8 (16)</td>
<td>0.003*</td>
<td>3.1 ± 2.4 (8)</td>
<td>0.069</td>
<td>0.828</td>
</tr>
<tr>
<td>6 Months</td>
<td>2.9 ± 3.1 (7)</td>
<td>0.074</td>
<td>5.3 ± 3.3 (14)</td>
<td>0.381</td>
<td>0.118</td>
</tr>
<tr>
<td>1 Year</td>
<td>3.1 ± 2.7 (5)</td>
<td>0.347</td>
<td>3.5 ± 2.9 (9)</td>
<td>0.196</td>
<td>0.796</td>
</tr>
<tr>
<td>ODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>43.5 ± 19.9 (44)</td>
<td>-</td>
<td>46.0 ± 26.6 (22)</td>
<td>-</td>
<td>0.647</td>
</tr>
<tr>
<td>6 Weeks</td>
<td>26.3 ± 19.6 (37)</td>
<td>< 0.001*</td>
<td>29.1 ± 15.3 (16)</td>
<td>0.004*</td>
<td>0.607</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>28.7 ± 22.3 (18)</td>
<td>< 0.001*</td>
<td>21.1 ± 13.4 (9)</td>
<td>0.035*</td>
<td>0.359</td>
</tr>
<tr>
<td>6 Months</td>
<td>28.0 ± 21.8 (9)</td>
<td>0.050*</td>
<td>40.2 ± 25.4 (14)</td>
<td>0.448</td>
<td>0.248</td>
</tr>
<tr>
<td>1 Year</td>
<td>35.7 ± 28.3 (8)</td>
<td>0.199</td>
<td>29.0 ± 23.0 (10)</td>
<td>0.065</td>
<td>0.584</td>
</tr>
<tr>
<td>SF-12 PCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>32.5 ± 9.1 (42)</td>
<td>-</td>
<td>32.4 ± 7.8 (20)</td>
<td>-</td>
<td>0.964</td>
</tr>
<tr>
<td>6 Weeks</td>
<td>38.6 ± 8.5 (33)</td>
<td>0.001*</td>
<td>34.7 ± 8.4 (17)</td>
<td>0.429</td>
<td>0.127</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>39.2 ± 9.7 (17)</td>
<td>< 0.001*</td>
<td>35.7 ± 7.7 (12)</td>
<td>0.139</td>
<td>0.313</td>
</tr>
<tr>
<td>6 Months</td>
<td>37.5 ± 9.9 (9)</td>
<td>0.282</td>
<td>33.4 ± 6.4 (14)</td>
<td>0.622</td>
<td>0.282</td>
</tr>
<tr>
<td>1 Year</td>
<td>39.6 ± 10.5 (9)</td>
<td>0.194</td>
<td>37.9 ± 9.9 (14)</td>
<td>0.059</td>
<td>0.694</td>
</tr>
<tr>
<td>VR-12 PCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>33.1 ± 9.7 (41)</td>
<td>-</td>
<td>34.2 ± 9.8 (20)</td>
<td>-</td>
<td>0.668</td>
</tr>
<tr>
<td>6 Weeks</td>
<td>42.8 ± 8.6 (32)</td>
<td>< 0.001*</td>
<td>37.7 ± 10.7 (17)</td>
<td>0.155</td>
<td>0.083</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>42.2 ± 10.1 (16)</td>
<td>< 0.001*</td>
<td>38.2 ± 8.7 (11)</td>
<td>0.196</td>
<td>0.299</td>
</tr>
<tr>
<td>6 Months</td>
<td>40.8 ± 11.5 (5)</td>
<td>0.279</td>
<td>35.5 ± 8.1 (14)</td>
<td>0.635</td>
<td>0.271</td>
</tr>
<tr>
<td>1 Year</td>
<td>44.6 ± 11.1 (7)</td>
<td>0.169</td>
<td>39.9 ± 10.5 (14)</td>
<td>0.106</td>
<td>0.356</td>
</tr>
<tr>
<td>PROMIS-PF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>39.1 ± 7.8 (29)</td>
<td>-</td>
<td>33.2 ± 6.9 (19)</td>
<td>-</td>
<td>0.011*</td>
</tr>
<tr>
<td>6 Weeks</td>
<td>42.6 ± 6.7 (22)</td>
<td>0.002*</td>
<td>38.1 ± 5.2 (16)</td>
<td>0.009*</td>
<td>0.032*</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>46.6 ± 7.5 (12)</td>
<td>< 0.001*</td>
<td>40.8 ± 7.2 (10)</td>
<td>0.028*</td>
<td>0.078</td>
</tr>
<tr>
<td>6 Months</td>
<td>52.3 ± 11.0 (7)</td>
<td>0.006*</td>
<td>37.7 ± 6.9 (12)</td>
<td>0.102</td>
<td>0.002*</td>
</tr>
<tr>
<td>1 Year</td>
<td>46.8 ± 4.7 (6)</td>
<td>0.060</td>
<td>37.9 ± 9.6 (12)</td>
<td>0.242</td>
<td>0.052</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation (number). PROM, Patient-Reported Outcome Measures; VAS, visual analogue scale; ODI, Oswestry Disability Index; SF-12 PCS, 12-item Short Form Health Survey physical composite score; VR-12 PCS, 12-item Veterans RAND physical component score; PROMIS-PF, Patient-Reported Outcome Measurement Information System physical function.

*<i>p</i> < 0.05, statistical significance. †<i>p</i>-values calculated using paired t-test. ‡<i>p</i>-values calculated using unpaired t-test. Indicates significance for mean PROM scores at specific time point between primary cohort and primary+revision cohort.
Table 4. Delta PROM for lumbar decompression patients

<table>
<thead>
<tr>
<th>PROM</th>
<th>Primary only</th>
<th>Primary+ revision</th>
<th>p-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ VAS back</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>3.5 ± 3.3</td>
<td>2.6 ± 2.8</td>
<td>0.192</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>0.57 ± 2.3</td>
<td>1.1 ± 3.3</td>
<td>0.535</td>
</tr>
<tr>
<td>6 Months</td>
<td>0.23 ± 1.6</td>
<td>1.3 ± 3.6</td>
<td>0.334</td>
</tr>
<tr>
<td>1 Year</td>
<td>1.5 ± 2.5</td>
<td>0.25 ± 3.5</td>
<td>0.531</td>
</tr>
<tr>
<td>Δ VAS Leg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>3.6 ± 3.1</td>
<td>2.4 ± 5.1</td>
<td>0.305</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>0.42 ± 1.8</td>
<td>0.36 ± 2.9</td>
<td>0.393</td>
</tr>
<tr>
<td>6 Months</td>
<td>0.07 ± 2.9</td>
<td>2.5 ± 3.3</td>
<td>0.126</td>
</tr>
<tr>
<td>1 Year</td>
<td>0.33 ± 4.1</td>
<td>1.6 ± 4.6</td>
<td>0.632</td>
</tr>
<tr>
<td>Δ ODI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>16.8 ± 21.5</td>
<td>19.7 ± 23.6</td>
<td>0.662</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>4.5 ± 12.6</td>
<td>4.9 ± 10.6</td>
<td>0.956</td>
</tr>
<tr>
<td>6 Months</td>
<td>4.2 ± 10.6</td>
<td>7.0 ± 14.9</td>
<td>0.662</td>
</tr>
<tr>
<td>1 Year</td>
<td>0.66 ± 11.0</td>
<td>10.7 ± 19.4</td>
<td>0.357</td>
</tr>
<tr>
<td>Δ SF-12 PCS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>7.3 ± 9.8</td>
<td>1.9 ± 9.8</td>
<td>0.079</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>1.8 ± 8.4</td>
<td>0.71 ± 5.1</td>
<td>0.712</td>
</tr>
<tr>
<td>6 Months</td>
<td>0.49 ± 11.9</td>
<td>2.7 ± 9.9</td>
<td>0.561</td>
</tr>
<tr>
<td>1 Year</td>
<td>5.6 ± 1.7</td>
<td>3.8 ± 10.9</td>
<td>0.809</td>
</tr>
<tr>
<td>Δ VR-12 PCS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>9.6 ± 9.5</td>
<td>4.3 ± 11.6</td>
<td>0.108</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>1.1 ± 7.3</td>
<td>0.33 ± 7.1</td>
<td>0.613</td>
</tr>
<tr>
<td>6 Months</td>
<td>0.55 ± 9.5</td>
<td>2.1 ± 10.8</td>
<td>0.775</td>
</tr>
<tr>
<td>1 Year</td>
<td>5.1 ± 1.4</td>
<td>4.3 ± 12.2</td>
<td>0.924</td>
</tr>
<tr>
<td>Δ PROMIS-PF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>4.4 ± 5.8</td>
<td>5.8 ± 7.5</td>
<td>0.512</td>
</tr>
<tr>
<td>12 Weeks</td>
<td>4.6 ± 7.2</td>
<td>3.5 ± 4.3</td>
<td>0.659</td>
</tr>
<tr>
<td>6 Months</td>
<td>6.9 ± 8.7</td>
<td>3.8 ± 7.5</td>
<td>0.024*</td>
</tr>
<tr>
<td>1 Year</td>
<td>9.9 ± 12.2</td>
<td>0.48 ± 10.6</td>
<td>0.105</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation. PROM, Patient-Reported Outcome Measures; VAS, visual analogue scale; ODI, Oswestry Disability Index; SF-12 PCS, 12-item Short Form Health Survey physical composite score; VR-12 PCS, 12-item Veterans RAND physical component score; PROMIS-PF, Patient-Reported Outcome Measurement Information System physical function. *p < 0.05, statistical significance. †p-values calculated using logistic regression.

Table 5. Preoperative PROM scores for lumbar decompression patients in primary+revision cohort

<table>
<thead>
<tr>
<th>PROM</th>
<th>Index operation for primary+ revision cohort</th>
<th>Revision operation for primary+ revision</th>
<th>p-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ VAS back</td>
<td>Preoperative 5.7 ± 2.6 (36)</td>
<td>6.1 ± 2.7 (26)</td>
<td>0.951</td>
</tr>
<tr>
<td>Δ VAS leg</td>
<td>Preoperative 6.1 ± 3.6 (22)</td>
<td>6.2 ± 2.7 (32)</td>
<td>0.564</td>
</tr>
<tr>
<td>Δ ODI</td>
<td>Preoperative 46.0 ± 26.6 (22)</td>
<td>45.5 ± 20.7 (23)</td>
<td>0.582</td>
</tr>
<tr>
<td>Δ SF-12 PCS</td>
<td>Preoperative 32.4 ± 7.8 (20)</td>
<td>29.7 ± 6.6 (32)</td>
<td>0.187</td>
</tr>
<tr>
<td>Δ VR-12 PCS</td>
<td>Preoperative 34.2 ± 9.8 (20)</td>
<td>31.6 ± 8.5 (31)</td>
<td>0.655</td>
</tr>
<tr>
<td>Δ PROMIS-PF</td>
<td>Preoperative 33.2 ± 6.9 (19)</td>
<td>32.5 ± 6.8 (21)</td>
<td>0.537</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation (number). PROM, Patient-Reported Outcome Measures; VAS, visual analogue scale; ODI, Oswestry Disability Index; SF-12 PCS, 12-item Short Form Health Survey physical composite score; VR-12 PCS, 12-item Veterans RAND physical component score; PROMIS-PF, Patient-Reported Outcome Measurement Information System physical function. *p-values calculated using 2-sample t-test.

Finding was made by Karhade et al., who reviewed 909 patients undergoing LD and found that lower preoperative PROMIS-PF score was the lone independent PRO metric to predict failure of achieving MCID in PROMIS-PF at final postoperative follow-up. One explanation for this may be that patients with a more severe baseline pathology, and therefore a worse preoperative PROMIS-PF, may benefit from a more meticulous decompression during the primary procedure when compared to patients with higher preoperative PROMIS-PF.

It should also be noted that the degree of change in PROMIS-PF scores was statistically significant at the 6-month follow-up appointment, and patients within our study population underwent revision surgery at an average of 7.4 months. Prior to this timepoint, there were no significant differences in the degree of change. Hung et al. established a repository of MCID values for patients with spinal conditions, and found the MCID for improvement in PROMIS-PF score at 6-month follow-up to range from 5.3 to 7.9 points. Given the common use of the 6-month follow-up appointment following common lumbar spine surgeries, this may be a valuable time for clinicians to carefully assess patients and consider if a revision surgery is indicated for those with a total change in PROMIS-PF score of approximate-
ly 5 points or fewer.23,24

Interestingly, there was no difference in the degree of change in PROMIS-PF scores at 1-year follow-up, though it did trend towards statistical significance. This may be explained by the fact that the majority of patients that required revision surgery within 2 years had already been identified by that time, thereby decreasing statistical power. In fact, most patients who have not undergone revision surgery are likely to have experienced a plateau in their clinical status by the 1-year postoperative mark. In a large PRO analysis of 909 patients undergoing lumbar surgery, for example, Adogwa et al.25 found that outcome measures obtained at 12 months postoperatively were highly predictive of and consistent with outcomes at 24 months.

The present study has important limitations. These data are not reflective of our comprehensive patient population, but were rather presented using a propensity matched analysis in order to more fully understand associations with PROMs. Furthermore, in an effort to focus on acute and subacute revisions, data was not analyzed beyond two-years postoperative and longer term insights are therefore not available. However, outcomes at one-year postoperative are likely representative of long-term follow-up for the majority of patients undergoing LD.26 In addition, despite our propensity matching strategy, there was a trend towards a difference in the prevalence of lumbar pathology (central stenosis versus herniated nucleus pulposus) between the 2 cohorts. Given an inherent difference in the natural history and likelihood of recurrence for both of these pathologies, this may have influenced the degree of patient improvement for the respective cohorts.9,15

CONCLUSION

LD surgery has generally been associated with reliable outcomes, but early identification of the few patients that may be at risk for requiring a revision surgery is critical. The findings of the present study suggest that although legacy outcome metrics may not provide insights, novel tools such as PROMIS-PF may serve a valuable role in predicting who is at risk. Furthermore, the 6-month follow-up period may be particularly valuable for counseling patients who are not experiencing improvement in their symptoms relative to their peers. Clinicians may use these findings to better identify and educate patients both before and after LD surgery in order to maximize the likelihood of an optimal outcome.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

Unilateral Biportal Endoscopy for Decompression of Extraforaminal Stenosis at the Lumbosacral Junction: Surgical Techniques and Clinical Outcomes

Man-Kyu Park1, Sang-Kyu Son1, Weon Wook Park2, Seung-Hyun Choi2, Dae Young Jung1, Dong Han Kim1

1Department of Neurosurgery, ParkWeonWook Hospital, Busan, Korea
2Department of Orthopedic Surgery, ParkWeonWook Hospital, Busan, Korea

Objective: The aims of this study were to describe the unilateral biportal endoscopic (UBE) technique for decompression of extraforaminal stenosis at L5–S1 and evaluate 1-year clinical outcomes. Especially, we evaluated compression factors of extraforaminal stenosis at L5–S1 and described the surgical technique for decompression in detail.

Methods: Thirty-five patients who underwent UBE decompression for extraforaminal stenosis at L5–S1 between March 2018 and February 2019 were enrolled. Clinical results were analyzed using the MacNab criteria, the visual analogue scale (VAS) for back and leg pain, and the Oswestry Disability Index (ODI). Compression factors evaluated pseudoarthrosis within the transverse process of L5 and ala of sacrum, disc bulging with or without osteophytes, and the thickened lumbosacral and extraforaminal ligament.

Results: The mean back VAS was 3.7 ± 1.8 before surgery, which dropped to 2.3 ± 0.8 at 1-year postoperative follow-up (p < 0.001). There was a significant drop in postoperative mean VAS for leg pain from 7.2 ± 1.1 to 2.3 ± 1.2 at 1 year (p < 0.001). The ODI was 61.5 before surgery and 28.6 (p < 0.001). Pseudoarthrosis between the transverse process and the ala was noted in all cases (35 of 35, 100%). Pure disc bulging was seen in 12 patients (34.3%), and disc bulging with osteophytes was demonstrated in 23 patients. The thickened lumbosacral and extraforaminal ligament were identified in 19 cases (51.4%). No complications occurred in any of the patients.

Conclusion: In the current study, good surgical outcomes without complications were achieved after UBE decompression for extraforaminal stenosis at L5–S1.

Keywords: Endoscopic spinal surgery, Extraforaminal stenosis, Far-out syndrome, Lumbosacral ligament, Paraspinal approach, Unilateral biportal endoscopy

INTRODUCTION

Extraforaminal stenosis in L5–S1, or far-out syndrome (FOS), was initially reported by Wiltse et al.1 in 1984, who demonstrated that an L5 nerve could be compressed by the transverse process (TP) of the L5 and the ala of the sacrum. A preoperative diagnosis of extraforaminal stenosis at L5–S1 is important because a lack of diagnosing extraforaminal stenosis at L5–S1 can result in failed back surgery syndrome.2,3 In the past, using a paraspinal approach for microsurgical decompression of foraminal lesions had been considered the gold standard for surgical treatment of lumbar foraminal or extraforaminal stenosis.1,4,5 But, access to the L5–S1 extraforaminal region is difficult for 2 reasons: (1) the distance between the L5 TP and sacral ala is too far and (2) the sacral ala is too far from the TP to reach through a paraspinal incision.
short, and (2) the iliac crest generally makes the operative corridor very narrow.6-9 Furthermore, significant manipulation of the dorsal root ganglion can result in postoperative leg pain or dysesthesia, and the surgery is technically challenging and more invasive due to the deep location. As a result, some studies report a high rate of chronic or recurrent radiculopathy following FOS microsurgical decompression.10,11

Lately, due to advancements in endoscopic spine surgery, the unilateral biportal endoscopic (UBE) technique has been applied in the cervical, thoracic and lumbar spine.12-15 For extraforaminal stenosis at L5–S1, the UBE technique, which can go further into the extraforaminal lesion less invasively, is becoming widespread and surpassing microscopic surgery in popularity. The purpose of this study is to present the UBE technique for complete decompression of extraforaminal stenosis at L5–S1 and evaluate 1-year clinical outcomes. Additionally, we evaluated the compression factors of extraforaminal stenosis at L5–S1 and described the surgical technique for complete decompression in detail compared to previous reports. Especially, we describe (1) a surgical corridor that can allow for effective removal of the thickened lumbosacral and extraforaminal ligament and (2) an anatomical landmark (thickened lumbosacral and extraforaminal ligament), one of the compression factors of extraforaminal stenosis at L5–S1 that shows how far to decompress laterally.

\textbf{MATERIALS AND METHODS}

\textbf{1. Patient Population}

After obtaining informed consent from Institutional Review Board approval (P01-202003-21-005), we retrospectively reviewed patients with extraforaminal stenosis at L5–S1 who underwent decompression using UBE between March 2018 and February 2019 at our institution. The indications for UBE decompression for extraforaminal stenosis at L5–S1 were the same as those for microsurgical decompression. The patients were eligible if they fulfilled the following inclusion criteria: (1) medically intractable unilateral L5 radiculopathy for at least 6 weeks; (2) L5–S1 extraforaminal stenosis with or without disc herniation confirmed on computed tomography and magnetic resonance imaging (MRI); (3) minimum follow-up for 1 year; and (4) no segmental instability. The exclusion criteria included multiple-level surgery, spondylolisthesis, or comorbid pathological conditions such as infection and compression fractures. The records of these patients were reviewed retrospectively and analyzed for demographic data, side of the surgery, duration of symptoms, follow-up period, operation time, hospital stay, and concomitant foraminal stenosis.

\textbf{2. Clinical and Radiological Assessment}

Three clinical and radiological subjects were evaluated: (1) clinical results, (2) compression factors of extraforaminal stenosis at L5–S1, and (3) surgical complications.

Clinical results were analyzed using a questionnaire for outcome scores (MacNab criteria, visual analogue scale [VAS] for back and leg pain, and Oswestry Disability Index [ODI]) preoperatively and 1 year postoperatively. Compression factors were analyzed using preoperative images as follows: (1) pseudoarthrosis between the TP of L5 and ala of sacrum, (2) ventral factor (disc bulging or disc bulging with osteophytes), and (3)

![Fig. 1. Preoperative lumbar simple x-ray (A) and intraoperative finding (B) showed contact within the transverse process of L5 and sacral ala. TP, transverse process; SAP, superior articular process.](https://doi.org/10.14245/ns.2142146.073)
the thickened lumbosacral and extraforaminal ligament. Pseudoarthrosis between the TP of L5 and ala was defined as contact between the TP of L5 and sacral ala on radiography (Fig. 1). Our study classified ventral factors into 2 subgroups: disc bulging with osteophytes and without osteophytes. Disc bulging with osteophytes was defined as calcification as seen in coronal CT. On the lumbar MRI, we checked the thickened lumbosacral and extraforaminal ligament at the intersection of the vertebral body, disc, TP of L5, and ala (Fig. 2). As a result of degeneration, the disc height is lowered, the gap between the TP of L5 and ala becomes narrower, and the lumbosacral and extraforaminal ligament buckles and becomes thicker. As a result, the hypertrophied lumbosacral and extraforaminal ligament create a pathologic structure that compresses the L5 nerve root.

Surgical complications were analyzed according to the incidence of dural tear and nerve root injury, reoperation due to postoperative hematoma, and infection during a year.

3. Surgical Techniques

Under general anesthesia, the patient is prepared in the prone position over a radiolucent chest frame. The operator stands on the ipsilateral side of the pathology. An assistant is on the opposite side of the operator to hold the retractor (Fig. 3).

1) Skin marking

The target is the superior sacral notch (the junction between the lateral aspect of the superior articular process [SAP] and sacral ala) on an anteroposterior view of the C-arm fluoroscopy. For right-handed surgeons, a left-side incision is made for a scope portal for endoscopic viewing, and a right-side incision is made for a working portal to manipulate the surgical instruments. The incisions are approximately 3 cm apart, where the center of both incisions are placed 1 cm lateral to the target (Fig. 4). When the caudal incision has interference from the iliac crest, a caudal incision can be made medially to avoid the iliac crest.

Fig. 2. The magnetic resonance imaging (MRI) images and schematic representation of the thickened lumbosacral ligament and extraforaminal ligament. (A) MRI in the axial plane of the thickened lumbosacral and extraforaminal ligament (white arrow). (B) MRI in the sagittal plane of the thickened lumbosacral and extraforaminal ligament. The between white line indicates the thickened extraforaminal ligament. The white arrow indicates the root compressed by the thickened lumbosacral and extraforaminal ligament. (C) Schematic anatomy of the sagittal plane of the thickened lumbosacral and extraforaminal ligament (black arrow). Sagittal T2-weighted (D) and axial T2-weighted (E) postoperative MRI demonstrating removal of the thickened lumbosacral and extraforaminal ligament. TP, transverse process.
2) Creating the portal and working space

Using fluoroscopic guidance, serial dilators are passed through the working portal and obturator, and a scopic sheath is advanced to the targeting point through the scopic portal. It is necessary to make a triangular position of the scopic sheath and serial dilator at a target point using the C-arm fluoroscopic view. Constant saline irrigation through 2 portals makes a clear surgical view during surgery. After confirmation of the correct positioning for both portals, a radiofrequency coagulator is coagulated to clean the soft tissues and muscles to make clear the anatomy. The surgical anatomy is first noticed as a landmark, including the inferior aspect of TP of L5, the supramedial part of the sacral ala, and the lateral aspect of the SAP of S1 (Fig. 5A).

![Fig. 3. The operator is on the ipsilateral side of the pathology. An assistant is on the opposite side of the operator to hold the retractor.](image)

![Fig. 4. Skin incision and target point on the fluoroscopic anteroposterior view. The target (white circle) is the superior sacral notch. The 2 incisions (blue lines) are approximately 3 cm apart, where the center of the incision is made 1 cm lateral to the target (dotted line). A scope is placed through the left incision and a working tool is placed through the right incision.](image)

![Fig. 5. Intraoperative images showing the steps in order of exposure and decompression in a case of extraforaminal stenosis at L5–S1. (A) The surgical anatomy is first noticed as a landmark, including the inferior aspect of L5 TP, the supramedial part of the sacral ala, and the lateral aspect of the SAP of S1. (B) After drilling of these bony structures, a T-shape figure made of partially removed inferior aspect of TP of L5, the supramedial part of the sacral ala, and the lateral aspect of the SAP of S1 is identified as a landmark for decompression. TP, transverse process; SAP, superior articular process.](image)
3) Bone working and ligament removal

The inferior aspect of TP of L5, the supramedial part of the sacral ala, and the lateral aspect of the SAP of S1 are removed with a high-speed drill and Kerrison rongeur. After drilling these bony structures, a T-shape figure made of a partially removed inferior aspect of TP of L5, the supramedial part of the sacral ala, and the lateral aspect of the SAP of S1 is identified as a landmark for decompression (Fig. 5B). This bony landmark is removed until the ligament is released from the bony structures. The lower part of the TP is removed from medial to lateral until the ligament is detached. After bone working is completed, the proximal portion of the ligament is detached from SAP using a freer elevator and Kerrison rongeur. After ligament removal, the exiting nerve root can be identified.

4) Removal of disc/osteophytes, thickened lumbosacral and extraforaminal ligament

After root confirmation, cautious and complete decompression of the root is made through the entire extraforaminal area. It is essential to completely remove the bulging disc and osteophytes that compress the exiting root ventrally. After flavectomy completion, the annulus is exposed right below the root. Then we use a radiofrequency probe to undergo the annulotomy and insert straight or curved pituitary forceps to remove disc fragments or osteophytes through Kambin’s triangle (Fig. 6A). The authors propose a new surgically corridor called “Son’s corridor,” because removal of the thickened lumbosacral and extraforaminal ligament via the Kambin triangle needs much retraction of the nerve root and may result in incomplete decompression. The boundaries of Son’s corridor are the remaining TP of L5, the lumbosacral ligament, and the exiting nerve root, as depicted in Fig. 6B. Son’s corridor serves as a strategic site of the superiolateral area of the L5 exiting root, which allows access to the thickened lumbosacral and extraforaminal ligament for complete decompression of extraforaminal stenosis at L5–S1. After ventral lesions removal, decompression continues laterally towards the thickened lumbosacral and extraforaminal ligament. The L5 root is compressed by a thickened lumbosacral and extraforaminal ligament that is the lateral margin of decompression for extraforaminal stenosis at L5–S1 (Fig. 6C). In addition, Son’s corridor considers the surgical corridor for removal of osteophytes from the L5 vertebral body, with a particular focus on removing the thickened lumbosacral and extraforaminal ligament. The arthroscopy basket punch is useful when

Fig. 6. Intraoperative images showing the sequential steps of removal of disc bulging/osteophytes, the thickened lumbosacral and extraforaminal ligament in a case of extraforaminal stenosis at L5–S1. (A) After completion of bone working and flavectomy, the annulus is exposed right under the root. (B) Illustrations on an extraforaminal area at L5–S1 demonstrating Son’s corridor (dotted triangle) and the thickened extraforaminal ligament (black arrow). (C) The Son’s corridor (white triangle) serves as a strategic site of superiolateral area of L5 exiting root, access to the thickened lumbosacral and extraforaminal ligament (white arrow) for complete decompression of extraforaminal stenosis at L5–S1. (D) The endpoint of extraforaminal stenosis at L5–S1 decompression is removal of the thickened lumbosacral and extraforaminal ligament compressed L5 root and free root mobilization, which can be demonstrated with endoscopic viewing. TP, transverse process; LSL, lumbosacral ligament.
removing the thickened lumbosacral and extraforaminal ligament (Supplementary video clip 1). The endpoint of extraforaminal stenosis at L5–S1 decompression is removal of thickened lumbosacral and extraforaminal ligament compressed L5 root and free mobilization of the root, which endoscopic viewing can confirm (Fig. 6D).

4. Statistical Analysis

All statistical analyses were performed using IBM SPSS ver. 18.0 (IBM Co., Armonk, NY, USA). All data are reported as mean ± standard deviation. Significant differences in preoperative and postoperative VAS scores were determined using the paired t-test. The threshold for statistical significance was set at p < 0.05.

RESULTS

1. Demographic Results

Between March 2018 and February 2019, 72 patients with extraforaminal stenosis at L5–S1 were treated decompression using UBE. Thirty-seven patients were excluded because of multiple-level surgery, spondylolisthesis, or less than 1 year of follow-up. Thirty-five consecutive patients who met the inclusion criteria with extraforaminal stenosis at L5–S1 underwent decompression by UBE. The study group consisted of 16 men and 19 women with a mean age at surgery of 68.4 ± 6.6 years. The mean duration of symptoms was 17.1 weeks. The mean follow-up was 14.9 months. The mean operative time was 63.5 minutes. The mean hospital stay was 6.9 days. Concomitant foraminal stenosis was found in 10 cases (28.6%) (Table 1).

2. Clinical Results

The MacNab criteria were “excellent” in 11 (31.4%), “good” in 17 (48.6%), “fair” in 5 (14.3%), and “poor” in 2 (5.7%) (Table 1). Out of 2 poor patients, one patient underwent lumbar fusion surgery 3 months after the operation and the other patient showed controlled symptoms with conservative treatment. The average VAS for back pain was 3.7 ± 1.8 before surgery, and this value dropped to 2.3 ± 0.8 at 1-year follow-up (p < 0.001). There was a significant drop in average postoperative VAS for leg pain from 7.2 ± 1.1 to 2.3 ± 1.2 at 1-year follow-up (p < 0.001). The ODI score was 61.5 points before surgery and 28.6 points at the 1-year follow-up and improved significantly after surgery (p < 0.001) (Table 2).

3. Surgical Complications

No serious complications occurred for any patient, including dural tear and nerve root injury, reoperation due to postoperative hematoma, and infection within a year.

4. Compression Factors of Extraforaminal Stenosis at L5–S1

All patients had extraforaminal stenosis at L5–S1 with a decreased disc height. There were no extraforaminal lumbar disc herniations or far-lateral disc herniations at L5–S1 with a maintained disc height. Pseudoarthrosis between the TP of L5 and

Table 1. Demographic findings of the study patients (n = 35)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, male:female</td>
<td>16:19</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>68.4 ± 6.6</td>
</tr>
<tr>
<td>Side of the surgery, right:left</td>
<td>15:20</td>
</tr>
<tr>
<td>Duration of symptoms (wk)</td>
<td>17.1 ± 17.8</td>
</tr>
<tr>
<td>Follow-up period (mo)</td>
<td>14.9 ± 4.2</td>
</tr>
<tr>
<td>Operation time (min)</td>
<td>63.5 ± 14.4</td>
</tr>
<tr>
<td>Hospital stay (day)</td>
<td>6.9 ± 2.9</td>
</tr>
<tr>
<td>MacNab criteria</td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>11</td>
</tr>
<tr>
<td>Good</td>
<td>17</td>
</tr>
<tr>
<td>Fair</td>
<td>5</td>
</tr>
<tr>
<td>Poor</td>
<td>2</td>
</tr>
<tr>
<td>With foraminal stenosis, n (%)</td>
<td>10 (28.6)</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation unless otherwise indicated.

Table 2. Preoperative and postoperative clinical scores (n = 35)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Preoperative</th>
<th>12 Months</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS back</td>
<td>3.71 ± 1.75</td>
<td>2.34 ± 0.76</td>
<td>< 0.001</td>
</tr>
<tr>
<td>VAS leg</td>
<td>7.23 ± 1.08</td>
<td>2.26 ± 1.17</td>
<td>< 0.001</td>
</tr>
<tr>
<td>ODI</td>
<td>61.5 ± 7.8</td>
<td>28.6 ± 6.2</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation. VAS, visual analogue scale; ODI, Oswestry Disability Index.

Table 3. Compression factors of extraforaminal stenosis at L5–S1

<table>
<thead>
<tr>
<th>Factor</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudoarthrosis between transverse process and ala</td>
<td>37 (100)</td>
</tr>
<tr>
<td>Ventral factor</td>
<td></td>
</tr>
<tr>
<td>Disc bulging</td>
<td>12 (34.3)</td>
</tr>
<tr>
<td>Disc bulging+osteophytes</td>
<td>23 (65.7)</td>
</tr>
<tr>
<td>Thickened lumbosacral and extraforaminal ligament</td>
<td>19 (51.4)</td>
</tr>
</tbody>
</table>
our pre-6-9,16-
and extraforaminal ligament was found in 19 cases (51.4%) (Table 3).

DISCUSSION

Traditional microscopic foraminotomy via the Wiltse paraspinal approach has been seen as an effective surgical treatment in treating FOS, but the procedure has drawbacks. UBE purports to mitigate those drawbacks, as it can allow for reaching deeper into the foraminal region less invasively.6-8,16 Our preliminary results on UBE for extraforaminal stenosis at L5–S1 showed that (1) extraforaminal stenosis at L5–S1 has 3 compression factors: (i) pseudoarthrosis between the TP of L5 and sacral ala, (ii) osteophytes and disc bulging, and (iii) the thickened lumbosacral and extraforaminal ligament; (2) UBE has good clinical outcomes, including lower postoperative VAS of back and leg and ODI scores; and (3) no patients in our preliminary study had complications arising from the technique.

As mentioned, surgical access to the L5–S1 extraforaminal area is difficult.7,16,17 Further, a prominent iliac crest sometimes may prevent a surgical corridor through the paraspinous Wiltse approach.17,18 Perhaps as a consequence, several researchers have reported poor outcomes after microscopic foraminotomy for extraforaminal stenosis at L5–S1.10,11 Many researchers have reported concomitant foraminal stenosis along with inadequate decompression as predictors of poor outcomes of microscopic foraminotomy for extraforaminal stenosis at L5–S1.1,13,17 Intra- and extraforaminal space decompression in such patients can only happen with sufficient removal of the facet joint with microscopic foraminotomy, which can result in further degeneration with secondary instability and chronic back pain.7

UBE has several advantages over microscopic foraminotomy for extraforaminal stenosis at L5–S1. First, UBE enables the surgeon to reach a deep site quickly and provides a well-illuminated surgical field with proper magnification.12,20-22 Second, the technique avoids unneeded invasion of surrounding tissues and preserves the facet joint, which consequently provides advantages for patients, such as reduced postoperative back pain and early resumption of routine activities.12 Third, necessary bone removal can be assessed in cases of concomitant foraminal stenosis. Decompressing an intradiscal lesion has been considered difficult with microscopic surgery in many cases.20 In contrast, UBE allows for specific assessment of the needed degree of facet resection, which minimizes the risk for residual stenosis or instability.20

We identified 3 compression factors in the present study: (1) pseudoarthrosis between the TP and ala, (2) osteophytes and disc bulging, and (3) the thickened lumbosacral and extraforaminal ligament. First, Wiltse et al.1 demonstrated a extraforaminal stenosis at L5–S1 characterized by L5 nerve entrapment caused by a descending TP of L5 and the superior portion of the medial sacral ala. In our study, the affected roots were compressed within the TP and the sacral ala at the medial facet of articulation in all cases. Second, another cause of extraforaminal stenosis at L5–S1 was osteophytes/disc bulging of the lateral margin of the vertebral body on the L5 and S1 vertebrae. Osteophytes/disc bulging were identified and seen to compress the L5 nerve root in recent studies.23,24 We believe that removal of disc bulging or osteophytes is important in extraforaminal stenosis at L5–S1, because if these compression factors are not removed, the symptoms may remain or the root may be compressed over time. Third, Nathan et al.24 showed in a cadaver study that the lumbosacral ligament, where the L5 spinal nerve passes, could be entrapped. Furthermore, several authors have indicated that the transforaminal or extraforaminal ligament, which is attached between the facet joints or TP and the intervertebral disc, could compress the lumbar nerve root in the extraforaminal area.25,26 Degenerative changes of intervertebral discs, lumbosacral ligament, and extraforaminal ligament make a pathologic structure, which could compress the L5 nerve root at the lumbosacral tunnel. To summarize, the lumbosacral and extraforaminal ligaments have no compression effect on the nerve root in normal circumstances, but with degeneration, the thickened lumbosacral and extraforaminal ligaments may play a role in causing radiculopathy. In our study, in cases where the thickened lumbosacral and extraforaminal ligaments were observed on MRI, it was shown that these pathologic bands compressed the superolateral aspect of the L5 nerve root under intraoperative endoscopic viewing (Fig. 6C). Earlier, we described the usefulness of “Son’s corridor” for complete removal of the thickened lumbosacral and extraforaminal ligaments. Detailed understanding of this strategic triangle can provide for precise and safe removal of the thickened lumbosacral and extraforaminal ligaments without much retraction of the nerve root.

Retroperitoneal fluid collection is one of the most fatal complications in the paraspinous approach using the UBE technique.12 There is a possibility of fluid accumulating into the retroperitoneal space if fluid out is poor.12 The barrier between the extraforaminal area and retroperitoneal area could be damaged when

https://doi.org/10.14245/ns.2142146.073

www.e-neurospine.org 877
the thickened lumbosacral and extraforaminal ligaments are removed, which may result in retroperitoneal fluid collection. Therefore, special care should be taken to not proceed ventrally farther than where the psoas muscle is. That is why we need to pay more attention to fluid coming out in the extraforaminal stenosis at L5–S1 using the UBE technique.

One limitation of the current study is that this was retrospective with a small sample size and the focus was on surgical techniques. Due to its retrospective nature, there is a potential for selection bias within the patient cohorts. Detailed prospective trials using a larger cohort that compares UBE with other techniques, such as conventional surgery, are needed for a deeper analysis of this topic.

CONCLUSION

In the current study, good surgical outcomes after UBE decompression were achieved without complications for patients with extraforaminal stenosis at L5–S1. UBE decompression can avoid certain technical difficulties associated with conventional procedures for extraforaminal stenosis at L5–S1. It is necessary to achieve an accurate diagnosis based on MRI, and complete decompression based on analyzing the extraforaminal anatomy is necessary. It is possible that the UBE technique can replace conventional surgical procedures to become the standard operating procedure for extraforaminal stenosis at L5–S1.

CONFLICT OF INTEREST

The authors have nothing to disclose.

SUPPLEMENTARY MATERIAL

Supplementary video clip 1 can be found via https://doi.org/10.14245/ns.2142146.073.

REFERENCES

15. Kim KR, Park JY. The technical feasibility of unilateral biportal endoscopic decompression for the unpredicted com-

Commentary on “Unilateral Biportal Endoscopy for Decompression of Extraforaminal Stenosis at the Lumbosacral Junction: Surgical Techniques and Clinical Outcomes”

Chang Kyu Lee¹, Insoo Kim²

¹Department of Neurosurgery, Spine and Spinal cord Institute, Yonsei University College of Medicine, Seoul, Korea
²Department of Neurosurgery, Keimyung University Dongsan Medical Center, Daegu, Korea

The extraforaminal region at the lumbosacral junction is difficult to access due to the narrow corridor and its deep location. Therefore, it is easy to overlook symptomatic extraforaminal stenosis of the lumbosacral junction, known as far-out syndrome or Bertolotti syndrome, in conventional magnetic resonance imaging.¹ This pathology may thus be considered in cases of failed back surgery syndrome with L5 root symptoms.

Decompressive microscopic surgery through the paraspinal approach has been performed for extraforaminal stenosis, but it has its own problems, including postoperative radicular pain, dysesthesia, and a limited field of view leading to incomplete decompression.² Fusion surgery with total facetectomy is sometimes considered.

Endoscopic spine surgery, which has many advantages including less postoperative pain with small incision and less soft tissue injury, short hospitalization, rapid functional recovery, and the possibility of being performed without general anesthesia in some cases, is popular among spine surgeons worldwide.³⁻⁵ Moreover, its technical and instrumental advancements have been tremendous. The authors introduced the unilateral biportal endoscopic (UBE) technique for extraforaminal stenosis at the L5–S1 level.⁶ The high quality of endoscopic imaging and application of a continuous irrigation fluid system make it possible to access any lesions around the foramen and extraforaminal region easily.⁷ The approach to extraforaminal lesions, including L5–S1, is sometimes challenging with conventional microscopes or endoscopes due to the iliac crest and hypertrophied L5 transverse process or sacral ala, which are major obstacles. Because the dual portals can be moved independently and are not interrupted by the endoscope, UBE may be feasible for pathology at narrow and deep locations.

As the authors described 3 compression points for extraforaminal stenosis at L5–S1—the pseudoarticulation between the L5 transverse process and sacral ala, the osteophyte and disc bulging, and the thickened lumbosacral and extraforaminal ligament—it is necessary to consider those factors in cases of insufficient decompression. Although UBE is a developing endoscopic surgical technique and has expanding surgical indications for spine surgery, research targeting specific topics, such as the safe bone working limit and fluid pres-
sure relationship, should be conducted. Prospective or randomized studies, as well as those with long-term follow-up results, are mandatory. Thanks to the authors, we have another weapon for challenging pathology. I congratulate the authors for their pioneering endoscopic surgery technique.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

Double Dome Laminoplasty: A Novel Technique for C2 Decompression

Dong-Ho Lee1, Gian Karlo P. Dadufalza2, Jong-Min Baik3, Sehan Park4, Jae Hwan Cho1, Chang Ju Hwang1, Choon Sung Lee1

1Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
2Department of Orthopedic Surgery, Philippine Orthopedic Center, Quezon City, the Philippines
3Department of Orthopedic Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
4Department of Orthopedic Surgery, Dongguk University Medical Center, Dongguk University College of Medicine, Goyang, Korea

Objective: To introduce a new surgical technique - double dome laminoplasty for decompression of the entire C2 lamina and preservation of an extensor muscle insertion.

Methods: Eleven consecutive cervical myelopathy patients due to ossification of the posterior longitudinal ligament involving the Axis (C2) area were contained at this study. Direct decompression was evaluated as an increasing rate in space available cord (%) and posterior cord shift (mm) at C2 level. The Japanese Orthopaedic Association (JOA) score, visual analogue scale, and C2–7 Cobb angle in a neutral lateral x-ray were analyzed.

Results: The mean increase in space available for spinal cord at the C2 level, average posterior cord shift, and JOA recovery rate were 69.7%, 5.3 ± 0.15 mm, and 58.0%, respectively. Cervical lordotic angle was maintained in all patients. One patient reported neck pain (visual analogue scale 6) postoperatively. No specific complications such as C2 laminar fracture or insufficient decompression were observed.

Conclusion: We recommend double dome laminoplasty for treating patients with cervical myelopathy involving the C2 area to avoid C2 laminectomy, reduce postoperative neck pain, and maintain lordotic cervical spine alignment.

Keywords: Cervical spine, C2, Myelopathy, OPLL, Dome laminoplasty

INTRODUCTION

Ossification of the posterior longitudinal ligament (OPLL) is a representative disease that compresses the spinal cord and causes cervical myelopathy. If the patient develops neurological symptoms, surgical treatment should be considered first.1,2 Most OPLL appear downwards, including C2, but it sometimes appears upward from C2 because posterior longitudinal ligament originates from the tectorial membrane.3-4 If it develops in the caudal area of C2, dome laminoplasty of C2 could be a good option; however, it requires an even cranial area behind dens, and adequate decompression technique has not yet been developed. Furthermore, the destruction of the semispinalis cervicis (SSC) insertion during laminoplasty of the conventional C2 cranial area is unavoidable because most of the SSC muscles are attached to C2 spinous process.5-11 Therefore, many patients complain of neck pain after this conventional laminoplasty and also, decrease in the range of neck motion.12,13 Therefore, SSC insertion into the caudal half of C2 should be preserved to minimize axial pain and loss of lordosis. A technique for splitting laminoplasty of C2 has been developed to prevent these complications; however, splitting laminoplasty of C2 also increases the excursion of semispinals, which results in muscle weakness. To reduce these complaints and to achieve effective direct decompression, we developed a new surgical technique – C2 double dome laminoplasty. The basic concept of thus surgical method is that it can widen the spinal canal very appropriately by a posterior approach and preserve the SSC muscle in order to de-
crease axial neck pain and maintain the neck lordosis. The purpose of this study is to evaluate the technical feasibility, efficiency, and safety of this surgical procedure.

MATERIALS AND METHODS

1. Study Population

This study was approved by the Institutional Review Board of Asan Medical Center (AMC 2020-1410). All cases were performed by a single operating surgeon and were studied retrospectively. Eleven cervical myelopathy patients (female: male, 5:6) who underwent C2 double dome laminoplasty between March 2016 and March 2018 at our institution were included. The including criteria were as follows: (1) cervical myelopathy patients with symptoms such as gait disturbance, hand clumsiness, and so on; (2) those who underwent C2 double dome laminoplasty due to OPLL involving the C2 cranial area; and (3) 24 months or longer follow-up period. Excluding criteria are as follows: revision operation, infection patients, cervical spondylolysis radiculopathy, and so on. The pre- and postoperative clinical neurologic status of all cases were measured by the Japanese Orthopaedic Association for cervical myelopathy (C-JOA) score, and the recovery rate, using the Hirabayashi method: (postoperative score-preoperative score) × 100/(17-preoperative score). Axial neck pain was assessed according to the visual analogue scale (VAS). And all patients were checked radiographically with cervical spine x-ray at 3 months, 6 months, 1 year, and 2 years after surgery. Computed tomography (CT) scan and magnetic resonance images were conducted for all patients at 1 and 2 years after operation.

Radiologic parameter of the C2–7 Cobb angle was measured by the angle between the lower end-plates of C2 and C7 in the cervical spine via a neutral lateral x-ray of the patient. Decompression was evaluated as an increase in space available for spinal cord (SAC) at the C2 level via a midsagittal CT scan. Preoperatively, the spinal canal dimension of the midsagittal C2 vertebral body level (Y) and the spinal cord dimension (X) at the corresponding level were determined after the surgery. An increasing rate of SAC (%) was calculated as (Y–X) × 100/Y (Fig. 1). Posterior cord shift (mm) was evaluated according to the average anterior cord space of the C2 level on a midsagittal magnetic resonance image. The distance of the posterior cord shift was measured as the distance from the posterior edge of the C2 OPLL to the posterior edge of the spinal cord. Initially was measured by magnetic resonance imaging before and approximately 1 year and 2 years after the surgery.

Fig. 1. Diagram of C2 double dome osteotomy. (A) There is the diffuse OPLL (black star) at C2 level, preoperatively. The 2 dotted lines indicate the part where osteotomy will be performed using high-speed burr. (B) This is the diagram after surgery with double dome osteotomy is performed, the enlarged spinal canal can be observed (Y). The spinal canal dimension of the midsagittal C2 vertebral body level (Y) and the spinal cord dimension (X) at the corresponding level were determined after the surgery. An increasing rate of SAC (%) was calculated as (Y–X) × 100/Y. OPLL, ossification of the posterior longitudinal ligament; SAC, space available for spinal cord.

Fig. 2. These serial photos were taken during surgery through a microscope. In each medical photos, the top is the cranial side and the bottom is the caudal side. (A) And C2 spinous process indicates the white star. Through the posterior midline approach, the semispinalis cervicis (black star) insertion at the caudal half of the C2 lamina was minimally detached and the rectus capitis posterior major (white arrowheads) and obliques capitis inferior (black arrowhead) were partially detached from the cranial one-third of the C2 lamina. (B) For fenestrating tunnel which is made underneath the entire C2 lamina, we confirmed safely using by the penfield.
2. Surgical Technique

Patients were placed in the standard prone position. Through the posterior midline approach, the SSC insertion at the caudal half of the C2 lamina was minimally detached and conventional dome-like laminoplasty was performed first by using a high-speed burr. Then, the rectus capitis posterior major and obliques capitis inferior were partially detached from the cranial one-third of the C2 lamina, and another dome-like laminoplasty was performed downwards (Fig. 1). All procedures were performed safely under a microscope. After confirming that the fenestration tunnel was made underneath the entire C2 lamina, all the detached muscles were repaired meticulously (Fig. 2). And additionally, we provided meticulously repairing the muscles such as rectus capitis posterior major and obliques capitis inferior, located in the proximal portion of the C2 spinous process, which play an important role as the secondary stabilizer of neck and head extension for maintaining the muscles as much as possible and reducing neck pain. So, these muscles were performed tight and layer by layer sutures. And simultaneously, we tried to keep the anatomy of each muscle as much as possible around C2 area. Finally, we confirmed that the surgical site was well decompression through the 3-dimensional CT scan after operation (Fig. 3).

3. Statistical Analysis

Data management and statistical analyses were conducted using the Wilcoxon signed-rank test for continuous variables and discrete variables via the IBM SPSS ver. 18.0 (IBM Co., Armonk, NY, USA). Significance was set at p < 0.05. The distributions of variables are presented as means and standard deviations.

RESULTS

The clinical and radiologic data of the 11 patients who underwent C2 double dome laminoplasty are listed in Table 1. For this study, we enrolled 5 women and 6 men with a mean age of

![Fig. 3. Preoperative and postoperative 3-dimensional (3D) reconstruction computed tomography (CT) images. (A) This 3D CT image shows a well of the patient's bone structure, preoperatively. (B) Postoperative 3D CT image which was taken postoperative 2 years shows definitely decompression at the C2 area through the double dome laminoplasty. And patient underwent the partial laminectomy of C3 and conventional laminoplasty of C4 and C5 for additional decompression.](https://doi.org/10.14245/ns.2143028.514)
61.3 ± 6.5 years. The average follow-up period was 34.3 ± 7.1 months.

The mean C-JOA score improved from 12.0 ± 1.4 preoperatively to 14.9 ± 1.9 at the final follow-up (p = 0.015). The mean recovery rate of the C-JOA score at the final follow-up was 58.0% ± 10.8%, and there was no neurologic deficit in all cases after the surgery. The axial neck pain VAS scores did not significantly differ before and after the operation. Only one patient reported persistent axial neck pain (VAS score of 6) at the final follow-up.

As an indicator of C2 decompression, the mean SAC improved from 6.7 ± 1.3 mm preoperatively to 15.2 ± 2.4 mm at the final follow-up (p < 0.001). The mean increase in SAC at the C2 level was 69.7% (Fig. 4). Furthermore, the average posterior cord shift statistically improved from 3.3 ± 1.1 mm preoperatively to 8.7 ± 1.2 mm at the final follow-up (p < 0.001). The average posterior cord shift was 5.3 ± 0.2 mm (Fig. 5). Neck alignment was well-maintained in all cases after the operation.

No specific complications, such as C2 laminar fracture or insufficient decompression, were observed. Furthermore, no perioperative complications were observed.

DISCUSSION

Cervical spine laminoplasty surgery is accepted as a safe and effective surgery for cervical myelopathy patients. However, the following complications - decreased range of motion, loss of cervical spine lordotic angle, and the axial neck pain that occur after laminoplasty surgery have often been a problem. Interlaminar fusion and radiologic change have been reported after surgery. And in particular, neck pain is often complained of due to disruption of the posterior neck deep muscle including the SSC. In particular, SSC is attached to C2 spinous process and acts as a dynamic stabilizer. However, in order to perform surgery using the conventional laminoplasty technique such as C2 laminoplasty or multilevel laminoplasty including C3, at least some of the SSC attached to C2 spinous process has to be removed. Of course, we would suture the SSC to the C2 spinous process again after surgery, but it might be difficult to restore it to the original state before surgery. Iizuka et al. researched the condition of the SSC muscle using magnetic resonance image after conventional laminoplasty and reported that only approximately 18% of the SSC is...
maintained after surgery even if we tight repair the SSC muscle to the C2 spinous process. Therefore, many methods have been introduced to effectively decompress cervical spine without damaging not only the SSC but also the multifidus muscles.20,25,26

Above mentioned, to overcome several complications of conventional laminoplasty and decompress the spinal cord of cervical spine, we developed a new and safe method for C2 area – C2 Double dome laminoplasty. Lee et al.27 show that emergency reoperation was needed in patients that underwent the incomplete C2 dome shape one directional decompression surgery. However, in this study, we confirmed that cord compression of the C2 area by OPLL was effectively decompressed by double dome laminoplasty. The improvement of SAC and posterior cord shift were statistically significant compared with that before and after the surgery. The mean SAC improved from 6.7 ± 1.3 mm to 15.2 ± 2.4 mm at the final follow-up ($p < 0.001$). The average increasing SAC value at C2 was 69.7%. Furthermore, the average posterior cord shift significantly improved from 3.3 ± 1.1 mm to 8.7 ± 1.2 mm at the final follow-up ($p < 0.001$), and the average posterior cord shift was 5.3 ± 0.2 mm.

The changes were also related to clinical outcome, as demonstrated by the significant improvements in C-JOA scores (from 12.0 ± 1.4 to 14.9 ± 1.9; mean recovery rate, 58.0\% \pm 10.8\%). A high C-JOA score means that the quality of life and function are improved, and appropriate decompression surgery is correlated with a high C-JOA score.28 Therefore, C2 double dome laminoplasty can be considered as an effective technique for decompression of the C2 area.

The most important concept of this technique is to reduce axial neck pain after surgery by taking an approach without damaging the SSC muscle. In particular, SSC of the posterior cervical muscle acts as a dynamic stabilizer, and the most powerful extensor in the cervical spine so maintain the neck alignment and lordotic angle.29,30 Anatomically, the SSC originates from the upper thoracic transverse process and inserts to C2 spinous process. So that is the main part among the posterior cervical spine muscles. Vasavada et al.31 reported that SSC provides powerful extension moment-generating quantity. Therefore, we performed a tight suture in order to completely restore the SSC after laminoplasty surgery. However, if the SSC cannot return as completely as it was before surgery, then we should avoid damaging it as much as possible. Thus, the preservation of SSC muscles is associated with a reduction in axial neck pain, which prevents deterioration in the patient’s quality of life due to postoperative neck pain. In addition, we provided meticu-

lously repairing the muscles such as rectus capitis posterior major and obliques capitis inferior, located in the proximal portion of the C2 spinous process, which play an important role as the secondary stabilizer of neck and head extension for maintaining the muscles as much as possible and reducing neck pain.

Qi et al.28 demonstrated that the group that underwent cervical deep muscle preserving laminoplasty showed better results in cervical spine function than the group that received conventional laminoplasty. Another study reported that among these extensor muscles, SSC, in particular, acts as a key muscle in maintaining neck function and neck alignment.32 This effort to preserve the cervical deep extensor muscle preserves blood flow to that muscle and maintains the muscle volume, so prevents atrophy of the theses muscle as well as surrounding ligaments contracture. And this procedure would make decrease the patient’s complications and increase the function of the neck. And the patient’s quick recovery can be expected even after muscle preserving laminoplasty technique. And therefore, the recovery of muscle control is promoted.28 Furthermore, in this study, there was almost no difference in neck pain before and after surgery, and cervical lordosis was well-maintained. However, in one case, the patient experienced an increase in neck pain at the final follow-up, which may have been due to the additional detachment of the SSC during the initial steps of this technique.

C2 double dome laminoplasty is a safe and useful technique for patients with cervical myelopathy due to C2 OPLL. However, the surgeon should check whether there is any anatomical variation in the surrounding the structure when performing this operation. Therefore, we recommend that you check the surgical site through CT scan and magnetic resonance image before surgery.

CONCLUSION

We recommend double dome laminoplasty for treating patients with cervical myelopathy, especially involving the C2 area. And we believe that this surgical technique can not only avoid C2 laminectomy, but also decrease the neck pain and maintain the cervical alignment, which surgeon wanted to overcome in the conventional laminoplasty. Furthermore, this new technique is a safe and effective way to decompress the spinal canal in the cervical area. Double dome laminoplasty might be a widely used method without complications for C2 decompression surgery.
CONFLICT OF INTEREST

The authors have nothing to disclose.

SUPPLEMENTARY MATERIAL

Supplementary video clip can be found via https://doi.org/10.14245/ns.2143028.514.

REFERENCES

25. Shiraishi T. Skip laminectomy - a new treatment for cervical spondylotic myelopathy, preserving bilateral muscular at-
Double Dome Laminoplasty: Works Well but There Are Exceptions

K. Daniel Riew
Department of Neurological Surgery, Och Spine Hospital/Weill Cornell Medical Center, New York, NY, USA

The authors describe a novel technique for decompressing the C2 region without performing a C2 laminectomy or laminoplasty.1 In 11 consecutive ossification of the posterior longitudinal ligament (OPLL) cases causing cord compression and myelopathy at C2, the authors performed a double dome laminoplasty. The rationale behind the procedure is to leave the dorsal cortex of the C2 spinous process and lamina intact, since the major extensor muscle of the neck, the semispinalis cervicis, inserts there. The authors noted improved Japanese Orthopaedic Association scores in all 11 patients, suggesting that myelopathy improved in all 11 patients.

This is yet another innovative technique to treat OPLL from the inventive mind of Professor Dong Ho Lee, who also invented the vertebral body sliding osteotomy technique for OPLL.2 For the patient who has OPLL extending cranially behind the C2 body, I agree that there are substantial advantages to this technique over the alternatives. I too have independently thought of and utilized this technique several times over the past 20 years but not to the extent that Professor Lee has. There are 2 reasons that I have not used this as frequently as he has. First, the prevalence of OPLL is less common in the United States than in Korea. Second, I have switched to fusing most patients who have extensive OPLL that extend behind C2. The rationale for this is that fusion is known to slow the growth of OPLL. If a patient has extensive OPLL such that a double dome laminoplasty can only give a few millimeters of extra room, and the patient’s life expectancy is more than 1–2 decades, I am concerned that further growth of the OPLL is likely to occur. The problem then is that the patient could be elderly and there are few treatment options other than a C2 total laminectomy (with resultant loss of the semispinalis insertion point). That could potentially result in cervical kyphosis. The elderly often have thoracic hyperkyphosis and compensate with increased cervical lordosis. So, losing that compensatory mechanism can result in a dropped head syndrome. In the case that is illustrated in this paper, the postoperative magnetic resonance imaging shows an adequate decompression. However, let’s assume that this patient is 40 years old. If one assumes that the OPLL started growing when the patient reached age 20, then it is not unreasonable to assume that the OPLL could double in size by the time the patient reaches age 60 and triple by age 80. If that occurs and there is recurrent cord compression with myelopathy, the treatment might necessitate a total C2 corpectomy with a combined transoral and upper cervical approach, followed by posterior occipitocervical fusion. Doing that on an elderly patient, with possibly an ossified dura, is not likely to be easy. For this reason, I prefer to use this technique for patients who are already elderly or
have demonstrated slow growing OPLL that is not likely to progress to cause recurrent cord compression and myelopathy in the patient's remaining lifetime.

CONFLICT OF INTEREST

The author has nothing to disclose.

REFERENCES

Technical Note

Percutaneous Endoscopic Interbody Debridement and Fusion for Pyogenic Lumbar Spondylodiskitis: Surgical Technique and the Comparison With Percutaneous Endoscopic Drainage and Debridement

Po-Ju Lai1,*, Sheng-Fen Wang2,*, Tsung-Ting Tsai1, Yun-Da Li1, Ping-Yeh Chiu1, Ming-Kai Hsieh1, Fu-Cheng Kao1

1Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
2Department of Anesthesiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan

Objective: Surgical treatment of severe infectious spondylodiskitis remains challenging. Although minimally invasive percutaneous endoscopic drainage and debridement (PEDD) may yield good results in complicated cases, outcomes of patients with extensive structural damage and mechanical instability may be unsatisfactory. To address severe infectious spondylodiskitis, we have developed a surgical technique called percutaneous endoscopic interbody debridement and fusion (PEIDF), which comprises endoscopic debridement, bone-graft interbody fusion, and percutaneous posterior instrumentation.

Methods: Outcomes of PEIDF in 12 patients and PEDD in 15 patients with infectious spondylodiskitis from April 2014 to July 2018 were reviewed retrospectively. Outcome were compared between 2 kinds of surgical procedures.

Results: Patients in PEIDF group had significantly lower rate of revision surgery (8.3% vs. 58.3%), better kyphosis angle (-5.73° ± 8.74 vs. 1.07° ± 2.70 in postoperative; 7.09° ± 7.23 vs. 0.79° ± 4.08 in kyphosis correction at 1 year), and higher fusion rate (83.3% vs. 46.7%) than those who received PEDD.

Conclusion: PEIDF is an effective approach for treating infectious spondylodiskitis, especially in patients with spinal instability and multiple medical comorbidities.

Keywords: Infectious spondylodiskitis, Kyphosis, Percutaneous endoscopic debridement, Spine instability

INTRODUCTION

Infectious spondylodiskitis presents as severe infection that may lead to disability and death,1 and is the third most common form of osteomyelitis in persons aged over 50 years.2 Sometimes it presents as a postoperative complication, or as severe endplate destruction or massive paraspinal abscess in patients who have not undergone previous spine surgery.3-5 Patients with identified pathogen treated with appropriate antibiotics are effective.1 However, surgical treatment is indicated when patients are unresponsive to antibiotics, have progressive spinal deformity or instability, and when acute neurological impairment occurs.6 Because the focus of infection is at the anterior column of vertebrae, direct and radical surgical debridement direct to anteri-
or infectious foci is considered as the effective surgical treatment. Percutaneous endoscopic drainage and debridement (PEDD) was the first endoscopic procedure developed to treat infectious spondylodiskitis and it reportedly provides effective infection control, except in the presence of extensive infection and structural instability. However, anterior instrumentation may be tenuous because the concomitant osteoporosis associated with infection renders the vertebrae structurally weak and may prevent adequate fixation. Stable posterior fixation is considered a major factor for successful infection control and satisfactory outcomes. Particularly, patients with advanced infectious spondylodiskitis leading to mechanical instability should still receive anterior debridement and stable fixation with autograft interbody fusion surgery. A combined anterior open surgery plus posterior instrumentation helps to overcome stability-related drawback of anterior approach alone. By contrast, it entails 2 surgeries with additional morbidity.

To address the complex issues of patients with infectious spondylodiskitis and to ultimately provide more effective treatment, the surgical technique, percutaneous endoscopic interbody debridement and fusion (PEIDF), was developed. The procedure comprises endoscopic debridement, bone-graft interbody fusion and posterior instrumentation. We evaluated the efficacy of the PEIDF technique in treating patients with infectious spondylodiskitis and compared them with those receiving PEDD. The hypothesis of this work is the efficiency of PEIDF would be at least equal or even better than PEDD, especially in the reoperation rate and kyphosis correction.

MATERIALS AND METHODS

1. Patients

Patients with infectious lumbar spondylodiskitis who received either PEIDF or PEDD at our hospital from April 2014 to July 2018 were recruited. They were selected to undergo PEIDF or PEDD due to poor overall health status with severe comorbidities for whom open surgeries were considered to be relatively contraindicated by orthopedic surgeons and infectious disease specialists. Infectious spondylodiskitis was diagnosed based on clinical symptoms, elevated inflammatory markers, and imaging results. Patients enrolled in our study were all transferred from Department of Internal Medicine at our institute, a 3,700-bed tertiary referral center. In our clinical practice, empirical antibiotics were started since initial diagnosis of infectious spondylodiskitis. Most patients suffered from 2 to 4 weeks of medical treatment course without clinical improvement, and all of them presented with intractable back pain and required narcotics for pain control preoperatively. PEIDF and PEDD were performed by 2 separate spine surgeons and the type of procedures was decided by the patient’s preference after thorough preoperative discussion and explanation. Surgical indications were infectious lumbar spondylodiskitis with intractable back pain, unknown pathogen, and poor response to medical treatment. Exclusion criteria were follow-up of less than one year, fungal or mycobacterial infection, neurologic deficits, multilevel spine infection, and complications from previous spine surgeries. In addition, patients with critically unstable status compromising the basic cardiac and pulmonary function were excluded, including recent ischemic heart disease with percutaneous coronary intervention, severe cardiac valvular disease, congestive heart failure, pulmonary hypertension, acute exacerbation of chronic obstructive pulmonary disease, and recent stroke. This study was approved by the Institutional Review Board (IRB) of Chang Gung Medical Foundation (IRB No. 201801219B0) and waived the requirement for informed consent due to the retrospective nature of the study.

Intravenous antibiotics were administered immediately after surgeries based on the culture reports and suggestions from the infectious disease specialists for 3–4 weeks according to the improvement of inflammatory markers, and then followed by oral antibiotics until at least 3 months of total antibiotic therapy (intravenous and oral antibiotics). All patients were encouraged to wear a brace while ambulating for at least 3 months, and they were under outpatient followed-up postoperatively at 3, 6 months, and then annually.

2. Surgical Procedure of PEIDF

Patients undergoing PEIDF were positioned prone with general anesthesia on a radiolucent table and intraoperative neuro-monitor was used to prevent nerve roots injury. After sterile preparation, the spinal needle was inserted directly into the target infected disc from the posterolateral side of the waist under the guidance of fluoroscopy. A guidewire was introduced through the spinal needle, and the needle was subsequently withdrawn. Dilators followed to create a larger space for the insertion of a working sleeve. Once the working portal was established and confirmed by fluoroscopy, necrotic tissue from the infected disc space was obtained for culture prior to any normal saline irrigation. Debridement of the infected disc was performed using grasping forceps, Kerrison punches, and endoscopic scissors. Multidirectional debridement was performed by adjusting the direction and depth of the working sleeve (Fig. 1). Disc space
reconstruction and intervertebral fusion were performed after radical debridement of infected disc foci and more than 1,000-mL normal saline irrigation. We filled up the hollow intervertebral space defect with morselized femoral-head-bone allograft. The allograft bone chips were placed into the disc space through the working sleeve, which was then compressed with an endoscopic impactor to increase the density of the allograft (Fig. 2). Posterior percutaneous screws insertion at 1 level above and below was performed under the guidance of fluoroscopy to avoid back muscle dissection and soft tissue injury (Fig. 3). Posterior instrumentation provides posterior support, and anterior bone grafting provides anterior column stability and interbody fusion. The combination provides a 3-dimensional stable construct for infection control and bone fusion. The comparison between PEIDF and PEDD procedures were shown in Table 1.

3. Surgical Procedure of PEDD

Like PEIDF, patients receiving PEDD were under a prone position via a posterolateral percutaneous approach. PEDD was performed under local or intravenous general anesthesia. After sterile preparation, the spinal needle was inserted directly into the target infected disc under the guidance of fluoroscopy. A guidewire was introduced through the spinal needle, and the needle was subsequently withdrawn. Dilators followed to create a larger space for the insertion of a working sleeve. Once the working portal was established and confirmed by fluoroscopy, necrotic tissue from the infected disc space was obtained for culture prior to any interference, including normal saline irrigation. Debridement of the infected disc was performed using grasping forceps, Kerrison punches, and endoscopic scissors. Multidirectional debridement was performed by adjusting the direction and depth of the working sleeve into the intervertebral space. The surgical endpoint was defined when all necrotic

Fig. 1. (A) Discectomy and debridement of the infected disc were performed using grasping forceps, Kerrison punches, and endoscopic scissors under fluoroscopic guidance. (B) Necrotic tissues from the infected disc space were sent for histopathological and microbiological studies. (C, D) Multidirectional debridement was performed by adjusting the direction and the depth of the working portal.
tissues were removed with healthy cancellous bone bleeding seen. After radical debridement, more than 1,000-mL normal saline irrigation was performed to decrease the bacteria loading and wash out necrotic debris as much as possible. Finally, a drainage catheter connecting with a negative-pressure Hemovac was inserted into the infectious intervertebral space through the working sleeve.

4. Clinical Evaluation
Data collected and analyzed from all patients included demographic data, clinical images, laboratory data, and culture reports. Preoperative magnetic resonance imaging was assessed for diagnosis, and plain radiographs of the lumbar spine before surgery, after surgery, and at follow-up were assessed for kyphosis correction. The segmental kyphosis angle of the lesion sites was measured using the superior endplate of the infected vertebral body above and inferior endplate of the infected vertebra below as reference points. Computed tomography (CT) was obtained one year after surgery to examine fusion status. Each intraoperative specimen was submitted immediately and was examined for microorganisms. Bone-graft fusion status was classified by Eck fusion criteria. The functional outcomes between 2 groups were investigated with visual analogue scale (VAS) to assess lower back pain and Oswestry Disability Index (ODI) to evaluate the level of disability. The VAS evaluations were done at preoperation, postoperation (1 week after surgery), and postoperative 3-month follow-up. And the ODI was assessed at preoperation and postoperative 3-month follow-up. We excluded the patients who died or received reoperations to truly evaluate the functional outcomes between the 2 procedures.

5. Statistical Analysis
All statistical calculations were performed using IBM SPSS Statistics ver. 22.0 (IBM Co., Armonk, NY, USA). Quantitative variables are expressed as mean ± standard deviation. Changes in variables at different time points were examined using the t-test, Mann-Whitney U-test for continuous variables, and Fisher exact test for categorical variables. The threshold for statistical significance was set at p < 0.05.

RESULTS
Twelve patients underwent PEIDF and 15 received PEDD
During the period from April 2014 to July 2018. The mean age of patients in PEIDF group was 68.17 ± 14.56 with 7 males and 5 females; PEDD group had the mean age, 63.07 ± 14.95, comprised of 12 males and 3 females. The most common infectious levels were L3–4 and L4–5 in all patients. Demographic data of the 2 groups were summarized in Table 2 and there was no statistical significance in age, sex, infectious level, and comorbidity between the 2 groups.

Two patients in PEIDF group did not have satisfactory outcome. One patient experienced a recurrent spine infection with septic nonunion and adjacent level spondylodiskitis. The patient was seen in the outpatient clinic at 2 months after discharge and readmitted due to elevated C-reactive protein (CRP) level and obvious posterior pedicle screws loosening. Six weeks of intravenous antibiotics did not control the recurrent spine infection, and she received the anterior open surgery. The other patient had the preoperative traumatic subdural hemorrhage. This patient had an excellent CRP level decrease at 1 and 3 weeks after surgery, and intraoperative tissue culture showed Staphylococcus aureus infection. However, this patient experienced a sudden onset subarachnoid hemorrhage in the intensive care unit at 1 month postoperatively. Compared with PEIDF group, there were 2 patients in PEDD group underwent revision surgeries for further debridement and posterior instrumentation within postoperative 3 months because of unrelieved back pain and infection control. Five patients in PEDD group suffered from residual back pain and soreness and then received fusion surgeries within postoperative 1 year. One PEDD patient’s clinical outcome was complicated by septic shock and he expired during hemodialysis after 2 weeks of PEDD.

1. Clinical and Functional Results

Both groups reported immediate back pain relief postoperatively, and CRP improvement was obvious at postoperative 1 and 3 weeks. Although the infection control was similarly effec-
Table 2. Demographic and clinical data of patients who received PEIDF and PEDD

<table>
<thead>
<tr>
<th>Variable</th>
<th>PEIDF (n = 12)</th>
<th>PEDD (n = 15)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>68.17 ± 14.56</td>
<td>63.07 ± 14.95</td>
<td>0.583</td>
</tr>
<tr>
<td>Sex, female:male</td>
<td>5:7</td>
<td>3:12</td>
<td>0.221</td>
</tr>
<tr>
<td>Infected level</td>
<td></td>
<td></td>
<td>0.281</td>
</tr>
<tr>
<td>L1–2</td>
<td>2 (16.7)</td>
<td>1 (6.7)</td>
<td></td>
</tr>
<tr>
<td>L2–3</td>
<td>3 (25)</td>
<td>1 (6.7)</td>
<td></td>
</tr>
<tr>
<td>L3–4</td>
<td>5 (41.7)</td>
<td>4 (26.7)</td>
<td></td>
</tr>
<tr>
<td>L4–5</td>
<td>2 (16.7)</td>
<td>7 (46.7)</td>
<td></td>
</tr>
<tr>
<td>L5–S1</td>
<td>0 (0)</td>
<td>2 (13.3)</td>
<td></td>
</tr>
<tr>
<td>Comorbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant history</td>
<td>2 (16.7)</td>
<td>3 (20)</td>
<td>0.825</td>
</tr>
<tr>
<td>Liver cirrhosis</td>
<td>5 (41.7)</td>
<td>3 (20)</td>
<td>0.221</td>
</tr>
<tr>
<td>ESRD</td>
<td>2 (16.7)</td>
<td>2 (13.3)</td>
<td>0.809</td>
</tr>
<tr>
<td>DM</td>
<td>4 (33.3)</td>
<td>4 (26.7)</td>
<td>0.706</td>
</tr>
<tr>
<td>CAD, heart failure</td>
<td>4 (33.3)</td>
<td>4 (26.7)</td>
<td>0.706</td>
</tr>
<tr>
<td>Clinical data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative CRP (mg/L)</td>
<td>135 ± 84.86</td>
<td>122 ± 64.9</td>
<td>0.095</td>
</tr>
<tr>
<td>Preoperative 1 week CRP (mg/L)</td>
<td>35.55 ± 28.34</td>
<td>43 ± 24.08</td>
<td>0.706</td>
</tr>
<tr>
<td>Preoperative 3 weeks CRP (mg/L)</td>
<td>16.09 ± 17.23</td>
<td>23.43 ± 11.69</td>
<td>0.455</td>
</tr>
<tr>
<td>CRP improvement at 3 weeks</td>
<td>89%</td>
<td>77%</td>
<td>0.143</td>
</tr>
<tr>
<td>Surgical blood loss (mL)</td>
<td>< 50</td>
<td>< 50</td>
<td></td>
</tr>
<tr>
<td>Surgical time (min)</td>
<td>114.27 ± 38.84</td>
<td>71.93 ± 22.22</td>
<td>0.047*</td>
</tr>
<tr>
<td>Shift to open surgery</td>
<td>1 (8.3)</td>
<td>7 (58.3)</td>
<td>0.030*</td>
</tr>
<tr>
<td>Expired</td>
<td>1 (8.3)</td>
<td>1 (6.7)</td>
<td>0.869</td>
</tr>
<tr>
<td>Functional outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative VAS</td>
<td>6.91 ± 1.14</td>
<td>7.00 ± 1.07</td>
<td>0.836</td>
</tr>
<tr>
<td>Postoperative VAS, 1 week</td>
<td>2.36 ± 0.92</td>
<td>2.13 ± 0.92</td>
<td>0.534</td>
</tr>
<tr>
<td>Postoperative VAS, 3 months</td>
<td>1.36 ± 0.50</td>
<td>1.80 ± 0.68</td>
<td>0.084</td>
</tr>
<tr>
<td>Preoperative ODI</td>
<td>70.46 ± 7.90</td>
<td>70.67 ± 8.77</td>
<td>0.95</td>
</tr>
<tr>
<td>Postoperative ODI, 3 months</td>
<td>26.18 ± 4.58</td>
<td>28.07 ± 8.46</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Values are presented as mean ± standard deviation or number (%).
PEIDF, percutaneous endoscopic interbody debridement and fusion; PEDD, percutaneous endoscopic drainage and debridement; ESRD, end-stage renal disease; DM, diabetes mellitus; CAD, coronary artery disease; CRP, C-reactive protein; VAS, visual analogue scale; ODI, Oswestry Disability Index.
*p < 0.05, statistical significance.

There were 7 patients in the PEDD group undergoing revised open fusion surgeries due to persistent back pain and residual infection within postoperative 1 year, significantly more than that in the PEIDF group (p = 0.030) (Table 2). The surgical time of PEIDF group was significantly longer than that of PEDD group (p = 0.047), but the surgical blood loss was both minimal, less than 50 mL because all procedures in PEIDF and PEDD were minimally invasive. The functional outcomes were assessed by VAS (preoperative, postoperative 1 week and 3 months) and ODI (preoperative and postoperative 3 months). We excluded 2 patients from PEIDF group and 8 from PEDD group because of either death or reoperation. Between PEIDF and PEDD patients without death and reoperation, 2 procedures had the same postoperative back pain relief and functional recovery (Table 2). There was no surgery-related major complication. However, 2 patients in PEIDF group (2 of 12, 16.7%) and 1 in PEDD group (1 of 15, 6.7%) complained about transient leg paresthesia. The symptoms were mild and
Table 3. Culture reports and radiographic outcomes

<table>
<thead>
<tr>
<th>Variable</th>
<th>PEIDF (n = 12)</th>
<th>PEDD (n = 15)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial or solid fusion</td>
<td>10 (83.3)</td>
<td>7 (46.7)</td>
<td>0.050</td>
</tr>
<tr>
<td>Segmental kyphosis angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>4.00 ± 11.39</td>
<td>3.21 ± 5.54</td>
<td>0.065</td>
</tr>
<tr>
<td>Postoperative</td>
<td>-5.73 ± 8.74</td>
<td>1.07 ± 2.70</td>
<td>0.004*</td>
</tr>
<tr>
<td>Postoperative 1 year</td>
<td>-3.30 ± 8.25</td>
<td>2.33 ± 4.93</td>
<td>0.089</td>
</tr>
<tr>
<td>Kyphosis correction at 1 year</td>
<td>7.09 ± 7.23</td>
<td>0.79 ± 4.08</td>
<td>0.049*</td>
</tr>
<tr>
<td>Culture rate</td>
<td>10 (83.3)</td>
<td>12 (80.0)</td>
<td>0.825</td>
</tr>
<tr>
<td>Methicillin-resistant Staphylococcus aureus</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Methicillin-sensitive Staphylococcus aureus</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Enterococcus spp.</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No growth</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as number (%) or mean ± standard deviation. PEIDF, percutaneous endoscopic interbody debridement and fusion; PEDD, percutaneous endoscopic drainage and debridement. Kyphosis angle: kyphosis +, lordosis -. *p < 0.05, statistical significance.

disappeared within 1 month.

2. Pathogens and Radiographic Outcomes

Causative bacteria were successfully identified in 10 patients of PEIDF group (the culture-positive rate, 83.3%) and 12 of PEDD group (80%) (Table 3). There was no significant difference about the culture-positive rate between the 2 groups (p = 0.825). Among those 22 patients, S. aureus was the predominant pathogen and 11 patients (6 methicillin-resistant and 5 methicillin-sensitive) were infected with it. The other causative microorganisms included Escherichia coli (3), Streptococcus spp. (4), Klebsiella pneumoniae (2), Enterococcus spp. (1), and Pseudomonas aeruginosa (2).

In follow-up radiographs, bone-graft interbody fusion of the infected segments was successful in most patients of PEIDF group, with the fusion rate was 83.3%. CT at postoperative one year showed, 7 had partial fusion (Fig. 4) and 3 solid fusion (Fig. 5). In PEIDF group, only 2 patients had no radiographic evidence of partial or solid fusion. One underwent anterior debridement and reconstruction with a struct allograft due to pseudoarthrosis, and the other died during hospitalization at 1 month postoperatively. Intraoperative interbody fusion with disc height restoration by allograft and posterior instrumentation of PEIDF supported the patients to get better postoperative segmental kyphosis angle (-5.73 ± 8.74 in PEIDF vs. 1.07 ± 2.70 in PEDD, p = 0.004) (Table 3) and kyphosis angle correction at postoperative 1 year (7.09 ± 7.23 in PEIDF vs. 0.79 ± 4.08 in PEDD, p = 0.049).

DISCUSSION

Our study is the first one to investigate the efficiency of 2 kinds of endoscopic procedures to treat infectious spondylodiskitis. PEIDF was developed under the basis of PEDD with bone-graft interbody fusion and percutaneous posterior instrumentation to enhance infection control, kyphosis correction, and spinal stability. According to our preliminary results, PEIDF had many similar advantages as PEDD in minimally invasion, well infection control, high pathogen identification rate, and back pain relief. Furthermore, PEIDF performed better kyphosis correction, less reoperation rate, and higher fusion rate than PEDD. Mechanical instability and kyphosis caused by vertebrae destruction of infectious spondylodiskitis would be solved by intervertebral bone grafting and percutaneous posterior instrumentation in PEIDF. In our point of view, PEIDF could be widely applicable in treating infectious spondylodiskitis of patients without neurologic deficits.

For infectious spondylodiskitis, conservative treatment with pathogen-sensitive antibiotics is adequate for most patients. However, there is a high rate of treatment failure for nonsurgical methods if the pathogen is not detected at an early stage. Rezai et al. reported that 25% of patients initially treated medically would eventually need surgical treatment. Common surgical indications for infectious spondylodiskitis include failed antibiotic therapy, intractable back pain, neurological deficits, epidural abscesses, extensive spine instability, and kyphotic deformity. In cases with severe spine instability or deformity, anterior debridement and reconstruction with or without posterior instrumentation is considered the mainstream surgical treatment, and results in satisfactory outcomes. Nonetheless, open anterior debridement surgery is associated with a high complication and mortality rate. Many patients with infectious spondylodiskitis are immunocompromised patients with multiple comorbidities, which make them poor candidates for open anterior surgeries. Prior studies have shown that the 1-stage posterior transforaminal approach with posterior instrumentation for infectious thoracic and lumbar spondylodiskitis can reduce...
Fig. 4. A 55-year-old man with L1–2 infectious spondylodiskitis (*Escherichia coli*) underwent percutaneous endoscopic interbody debridement and fusion treatment. (A) Preoperative magnetic resonance imaging revealed L1–2 infectious spondylodiskitis with severe disc destruction and large bony defect. (B) Postoperative radiography showed kyphosis correction fixed with posterior instrumentation and bony defect reconstruction filled up with cancellous allograft bone chips. (C) Bony bridges were found at plain films at postoperative 1 year and (D) only mild defect was noted without fusion in computed tomography scan.

the rate of complications in open anterior surgeries and is associated with decreased blood loss, a good fusion rate, a satisfactory culture rate, and early postoperative ambulation with better functional outcomes. Nevertheless, there are still concerns with the 1-stage posterior procedure such as infectious contamination from anterior infectious foci to posterior virgin site, less visibility of the infected disc, posterior ligamentous complex injury, and the risks associated with manipulation of the spinal cord.

Some minimally invasive methods for treating spine infections have been described by other authors. CT-guided drainage had long been an alternative treatment for patients whose pathogen was not identified or who failed medical treatment. As an extension of percutaneous abscess drainage, first PEDD was described by Yang et al. in 2007. The procedure yielded a high rate of pathogen identification and infection control using only 1 or 2 small incisions. Subsequently, many similar methods were then described including different endoscope approaches, bilateral portal use, and irrigation with diluted beta iodine solution. The indications of PEDD were also extended to treat some cases of complicated infectious spondylodiskitis. According to Yang et al., patients with large paraspinal abscess-
Fig. 5. A 58-year-old woman had liver cirrhosis and renal function impairment. (A) She suffered from L3–4 *Staphylococcus caprae* spondylodiskitis with severe back pain and massive paraspinal abscess. (B) After percutaneous endoscopic interbody debridement and fusion treatment, she got back pain relief and postoperative radiography showed disc defect filled up with allograft bone chips for interbody fusion. (C) Solid bony bridge and interbody fusion were obvious in radiography after postoperative 1 year, (D) especially in 3-dimensional computed tomography scans.

es or postoperative recurrent infection could be treated by PEDD. However, in the same study, they reported failure of PEDD in patients with severe endplate destruction and spinal instability. The authors suggested that debridement alone could not address mechanical problems, and mechanical instability of spine was one of the main reasons for revision surgeries. In our study, we did not exclude the patients with spinal instability, severe local kyphosis, and extensive bony defects preoperatively. Although, most of patients in PEDD group got immediate relief of back pain and infection control after the surgeries, 7 of them suffered from residual back pain during ambulation within postoperative 3 months and one year. Unrelieved motion pain with mechanical instability was the major factor which contributed to more subsequent revision fusion surgeries in PEDD group than that in PEIDF group (58.3% vs. 8.3%, p = 0.030). Firm fixation could also rapidly reduce back pain and consolidate infection control, even in the absence of debridement of infected tissue. Yang et al. demonstrated that surgical stabilization for infectious spondylodiskitis was associated with faster recovery, lower pain scores, and improved quality of life.

Surgical treatment for infectious spondylodiskitis remains challenging, especially for patients with comorbidities such as diabetes mellitus, immunosuppression, heart failure, liver cirrhosis, and renal failure. In this study, we introduced a newly developed surgical technique, PEIDF that simultaneously comprises anterior endoscopic debridement, reconstruction, bone-
grafting interbody fusion, and posterior instrumentation. The goals of surgical treatment of spinal infections are to debride the infected tissue, identify the pathogen, and restabilize the deformed spine. There were 2 major parts of our PEIDF procedure. One was anterior procedure, infectious foci debridement and reconstruction, and the other was posterior procedure, stabilization via posterior instrumentation. Both anterior and posterior procedures could be done under prone position. In the anterior procedure of our PEIDF, infectious foci debridement of the intervertebral space, which was traditionally conducted via anterior open surgery, were performed through the endoscopic working sleeve via a 1-cm incision at the posterolateral side of the waist, as in Fig. 2. Endoscopy and fluoroscopy provided a clear and detailed view of the surgical fields, and they allowed us to do radical sequestrectomy and debridement of all necrotic disc tissue with minimal soft tissue damage and blood loss, as in Fig. 1. There was no concern for posterior contamination due to the intact fascia and posterior longitudinal ligament, which acted as a natural barrier to prevent infection spreading. Furthermore, intervertebral reconstruction and fusion via impacted cancellous allograft bone chips through the endoscopic working sleeve would decrease the postoperative instability and back pain. Posterior instrumentation with percutaneous pedicle screw insertion comprised the posterior procedure of PEIDF along with the benefits of preserving back erector muscles, facet joints, and bony structures. From reviewing the literature, posterior transforaminal debridement and fusion via impacted cancellous bone chips with pedicle screw fixation was proven effective and offered good clinical outcome for the treatment of infectious spondylodiskitis in lumbar and thoracic spine.12,21,29,30 Under this basis, PEIDF provides the same qualification for spinal fusion and stability, alongside the preservation of back erector muscles, facet joints, and posterior bony structures. In summary, our PEIDF procedure would be composed of anterior radical debridement of infectious foci and restabilization via anterior bone-grafting reconstruction and posterior percutaneous instrumentation, with only five 1-cm skin incisions.

Percutaneous endoscopic lumbar discectomy and interbody fusion had been described in recent years, with good outcomes in patients without infections.35-37 In our review of the literature, we found no reports about the application of endoscopic technique for infectious spine debridement, reconstruction, and fusion. In our preliminary results of PEIDF group, the infection control and fusion rates were satisfactory. Only 1 patient required revision surgery due to recurrent infection and implant loosening 2 months after discharge. However, this patient had end-stage renal failure and right septic knee. Three patients achieved solid fusion, and 7 partial union at 1 year after surgery, with an overall fusion rate of 83.3%. Spine sagittal alignment was also improved after surgery, and postoperative kyphosis angle and correction at 1 year were significantly better in PEIDF group. Late kyphosis is often observed to some degree after spine infection, especially in patients treated conservatively. Chronic back pain, muscle fatigue, and disability are related to spine malalignment, including pathologic kyphosis.36 Loss of lordosis causes a predisposition to adjacent disc degeneration and physiological discomfort. Rajnics et al.39 showed that people with predisposing disc degeneration and low back pain had a relatively kyphotic spine in the sagittal plane.

Antibiotic treatment guided by culture results remains the mainstay treatment of pyogenic spondylodiskitis.40 Microbiological diagnosis is essential to enable targeted antibiotic treatment, and could be obtained through blood samples or deep necrotic tissue from CT-guided biopsy or surgery. In all patients of this study, abscess and necrotic tissue from the infected disc were sent for histopathological and microbiological studies. We performed this procedure as the first step, prior to any normal saline irrigation during both PEIDF and PEDD. Then, positive pathogen identification was 10 in PEIDF group (83.3%) and 12 in PEDD group (80%) and the main pathogen identified in our study was \textit{S. aureus} (11 of 22, 50%), which were similar with other studies.41

The innovative surgical procedure, PEIDF is composed of the advantage of minimally invasive approach for infectious foci debridement in PEDD, and the spinal restabilization through bone-grafting reconstruction and percutaneous posterior instrumentation. This procedure supports minimally invasive surgical treatment for infected patients with multiple comorbidities, machinal back pain, spinal instability, large bone defect, and kyphosis. There are some limitations of this study. The study was performed at one single medical center, and the number of patients was small. The retrospective nature of the study makes control of bias and confounders difficult. Some selection bias would result from our narrow inclusion criteria and exclusion criteria. Lastly, the follow-up period was short; longer follow-up time is necessary to determine the long-term outcomes of the PEIDF procedure.

CONCLUSION

PEIDF is an effective procedure for the treatment of pyogenic
lumbar spondylodiskitis, especially in patients with an unstable spine and medical comorbidities. It is minimally invasive, allows rapid ambulation, and is associated with good clinical and functional outcomes. Based on the results of this study, future studies with larger numbers of patients and longer follow-up to further evaluate the procedure are warranted.

CONFLICT OF INTEREST

The authors have nothing to disclose.

ACKNOWLEDGMENTS

This work is supported by Chang Gung Memorial Hospital (CMRPG3K0631).

REFERENCES

Upper Cervical Compression Myelopathy Caused by the Retro-Odontoid Pseudotumor With Degenerative Osteoarthritis and Calcium Pyrophosphate Dihydrate Disease: A Case Report and Literature Review

Takashi Yurube¹*, Tetsuro Iguchi²*, Keisuke Kinoshita², Takashi Sadamitsu², Kenichiro Kakutani¹

¹Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
²Department of Orthopedic Surgery, Saiseikai Hyogo Prefecture Hospital, Kobe, Japan

The retro-odontoid pseudotumor is often concurrent with atlantoaxial subluxation (AAS). Therefore, the pseudotumor is relatively common in rheumatoid arthritis (RA) but rare in primary osteoarthritis (OA). This is a case report of an elderly male patient suffering from neck pain and compression myelopathy caused by the craniocervical pseudotumor with OA but without atlantoaxial instability. He had long-lasting peripheral and spinal pain treated by nonsteroidal anti-inflammatory drugs. Imaging found upper cervical spondylosis without AAS or dynamic instability but with periodontoid calcifications and ossifications, suggesting calcium pyrophosphate dihydrate (CPPD) crystal deposition. Based on a comprehensive literature search and review, CPPD disease around the atlantodental joint is a possible contributor to secondary OA development and retro-odontoid pannus formation through chronic inflammation, which can be enough severe to induce compression myelopathy in non-RA patients without AAS. The global increase in the aged population advises caution regarding more prevalent upper cervical spine disorders associated with OA and CPPD.

Keywords: Retro-odontoid atlantodental pseudotumor, Osteoarthritis, Calcium pyrophosphate dihydrate, Compression myelopathy, Neck pain, Cervical spine

INTRODUCTION

The retro-odontoid pseudotumor around the atlantodental joint is often concurrent with non-traumatic atlantoaxial subluxation (AAS).¹ Therefore, pannus formation by atlantoaxial instability is a relatively common complication in patients with rheumatoid arthritis (RA), a chronic, systemic inflammatory disease.² The cervical spine is a popular focus of ligamentous laxity and joint destruction by RA, and AAS is the most frequently observed involvement.³,⁴ The pseudotumor can occur even in patients without RA,⁵ which is however a rare condition in upper cervical osteoarthritis (OA).⁶,⁷ Although the development of OA is multifactorial, altered mechanical properties arising from degenerative instability⁸,⁹ with calcification and/or ossification¹⁰,¹¹ are the primary cause.¹² Then, OA can secondarily be developed often more severely by other factors includ-
ing trauma, inflammation, e.g., gout, and metabolic disorders, e.g., diabetes. Because of less involvement of AAS in OA, there is only limited evidence regarding the link between the cranio-cervical pseudotumor, atlantoaxial instability, and OA.

We experienced an elderly male patient case of the retro-odontoid atlantodental pseudotumor with upper cervical OA including the occipitocervical region, thereby causing compression myelopathy. The patient did not have marked AAS but periodontoid calcifications and ossifications, suggesting the involvement of calcium pyrophosphate dihydrate (CPPD) crystal deposition disease, also known as pseudogout and pyrophosphate arthropathy. In this case, CPPD-induced chronic inflammation may be a causative factor of secondary OA and the atlantoaxial pseudotumor. We thus performed a comprehensive literature search and review. We discussed a possible contribution of CPPD to the retro-odontoid pseudotumor in non-RA but OA patients without AAS and also the selection of treatment options.

CASE REPORT

This study was approved by the Institutional Review Board (IRB) at Kobe University Graduate School of Medicine (IRB No. B190002). Written informed consent was obtained from the patient. Further, this patient was informed that data from the case would be submitted for publication, and gave his consent. This study was conducted in accordance with the principles of the Declaration of Helsinki and with the laws and regulations of Japan.

A 55-year-old Japanese man was referred to the authors’ hospital due to complaints of low back, neck, shoulder, elbow, and hip pain. His symptoms lasted long before visiting, but relieved conservatively by nonsteroidal anti-inflammatory drugs (NSAIDs). His low back pain resulted from lumbar spinal canal stenosis with disc herniation as shown by magnetic resonance imaging (MRI). Then, his visiting continued 1 to 3 times a year complaining joint pain without any abnormality reflected on the blood test. Radiographic peripheral joint findings were normal except for hip joint effusion detected by MRI when he was 57 years old.

At 62 years old, neck pain worsened with a limited range of motion. Cervical spine flexion–extension radiographs revealed no apparent atlantoaxial instability but structural changes were obscure because of bony overlapping. Then, MRIs showed slight cervical disc bulging in lower vertebrae and granulomatous soft-tissue swelling around the atlantodental joint that resembled the pseudotumor associated with AAS in RA (Fig. 1). Based on no spinal cord compression and rapid pain relief by NSAIDs, further examinations were not performed. He had medical history of hypertension but not diabetes mellitus, rheumatic dis-

Fig. 1. Midsagittal T2-weighted magnetic resonance imaging of the cervical spine in the male patient at 62 years old. Atlantodental joint swelling without spinal cord compression was observed.

Fig. 2. Lateral radiographs in flexion (A) and extension (B) positions of the cervical spine in the male patient at 68 years old. No apparent development of atlantoaxial subluxation but with upper cervical degenerative spondylosis was observed.
Eases, allergic diseases, or metabolic disorders. However, as low back and leg pain by lumbar spinal stenosis had worsened, decompression surgery was performed at 66 years old, facilitating successful postoperative relief of symptoms.

At 68 years old, he felt severe neck and occipital pain with limited motion in extension with rotation, shooting pain in both upper extremities with hand clumsiness and numbness, and walking disturbance. Four days after the onset, he visited our hospital. Neurological examination revealed modest muscle weakness in left extremities; however, sensory sensation and deep tendon reflexes were normal except for elevated left ankle jerk. Laboratory blood and urine data were within normal limits including white blood cell count and C-reactive protein. Cervical spine radiographs demonstrated subaxial spondylosis including vertebral osteophytes with disc height narrowing and Barsony’s sign; however, no marked development of AAS or dynamic atlantoaxial instability was observed in flexion and extension positions (Fig. 2). Spinal cord compression by the enlarged retro-odontoid pseudotumor and C1 posterior arch with an intramedullary high signal-intensity lesion was detected on T2-weighted MRIs (Fig. 3). Computed tomography (CT) scan showed degenerative changes with calcifications and osteophytes around the occipitocervical junction but no ossification of the anterior longitudinal ligament (OALL) (Fig. 4). According to neurological and radiological findings with previous disease episodes, this patient was diagnosed with compression myelopathy due to the retro-odontoid pseudotumor associated with OA and CPPD but without RA or AAS.

Because of the presented long tract sign and difficulty of daily activities, surgical resection of the posterior arch of the atlas was performed. No apparent atlantoaxial instability indicated decompression alone. His symptoms immediately disappeared after C1 laminectomy. No remarkable AAS progression in radiographs, maintained spinal cord decompression with a decreased intramedullary abnormal signal at C1–2 level on T2-weighted MRIs, although the size of the retro-odontoid pseudotumor remained relatively unchanged, and increased peri-odontoid calcifications and osteophytes in CT images, suggest-

![Fig. 3. Midsagittal T2-weighted magnetic resonance imaging of the cervical spine in the male patient at 68 years old. Marked spinal cord compression with an intramedullary high-signal intensity lesion between the enlarged retro-odontoid pseudotumor and C1 posterior arch was observed.](image-url)

![Fig. 4. Computed tomography images of the occipitocervical joint in the male patient at 68 years old. (A) In a midsagittal image, small but multiple calcifications (arrowhead) and osteophytes around the atlantodental joint were observed. (B) In a parasagittal image, calcifications (arrowheads), and narrowed joints with osteophytes (arrows) in the upper cervical spine were observed. (C) In a coronal image, ossifications of the transverse ligament (arrowheads) and degenerative joints (arrows) were observed. (D) In an axial image at C1–2, osteophytes and ossifications along with the transverse ligament (arrowheads) were observed. R indicates the right side of the body.](image-url)
Retro-Odontoid Pseudotumor With OA and CPPD

Yurube T, et al.

LITERATURE SEARCH

Literature search of scientific articles published between 1977 and 2019 was performed in PubMed (https://pubmed.ncbi.nlm.nih.gov/). Three primary keywords of “pseudotumor” (107), “OA” (531), and “CPPD” including “pseudogout” and “chondrocalcinosis” (372) were examined with the combination of “retro-odontoid,” “atlantoaxial,” atlantodental,” “atlanto-odontoid,” “atlantodens,” and “cervical spine.” Numbers in the parenthesis showed in-relevant articles. Important articles regarding RA, AAS, and diffuse idiopathic skeletal hyperostosis (DISH) were additionally obtained by hand search. The abstract was evaluated and discussed by 2 authors (TY and TI), and 96 articles were selected eligible for the inclusion in this literature review. Based on 4 major topics of craniocervical “pseudotumor,” “OA,” “CPPD,” and “treatment” related to the presented patient case, 70 articles were finally referenced.

DISCUSSION

This is a case report of an older male patient suffering from neck pain and compression myelopathy due to chronic CPPD inflammation-induced secondary upper cervical OA and atlanto-odontoid pseudotumor even without AAS. Few prior papers reviewing the retro-odontoid “pseudotumor” with “OA” and “CPPD” have been published. The “treatment” is also undetermined. Therefore, we performed an in-depth literature review and discussed this patient case based on these 4 issues.

1. Non-RA Retro-Odontoid Pseudotumor

The retro-odontoid pseudotumor and/or AAS can be developed in patients with autoimmune diseases including RA,1-5 ankylosing spondylitis (AS),16 systemic lupus erythematosus (SLE),17,18 and Sjögren syndrome,18 which is also observed in non-RA patients with gout, pseudogout, hemodialysis, pigmented villonodular synovitis, and odontoid fracture nonunion.1 Factors related to cervical spinal cord compression are synovial cyst, epidural lipoma and hematomata, and ossification of the posterior longitudinal ligament.1 Although the generalized incidence of the retro-odontoid pseudotumor is unknown because of its rarity, the pseudotumor was detected by MRI in 23.2% of 164 patients with AAS surgically treated.19 In more recent registry data from a consecutive MRI study of 105 patients with the pseudotumor, RA diagnosis was only 27.6%,7 indicating a common involvement of non-RA disease. It is noteworthy that 44.7% of non-RA patients, who were older and male-dominant, had clinical CPPD or imaging evidence for tissue calcification.7

Fig. 5. Lateral radiographs in flexion (A) and extension (B) positions, midsagittal T2-weighted magnetic resonance imaging (C), and midsagittal (D) and axial at C1–2 (E) computed tomography images of the cervical spine in the male patient at 70 years old. No remarkable progression of atlantoaxial subluxation was observed 2 years after laminectomy of the C1 posterior arch. Surgical decompression of the spinal cord at C1–2 level with an improved intramedullary high-signal intensity lesion was obtained. Meanwhile, elevated levels of periodontoid calcifications (D, arrowheads) and ossifications (E, arrowheads) were found, indicating calcium pyrophosphate dihydrate crystal deposition.
pathomechanism of the pseudotumor development in non-RA is considered as transverse ligament degeneration\(^6\)–\(^9\) due to the altered biomechanics of the craniocervical junction from congenital atlantooccipital assimilation anomaly\(^2\) as well as subaxial ankylosis in severe spondylosis,\(^2\) OALL,\(^2\)\(^3\) Forester disease,\(^2\)\(^4\) DISH,\(^2\)\(^5\),\(^2\)\(^6\) and AS.\(^1\)\(^6\) A systematic review of the pseudotumor without radiographic instability failed due to the limited number of cases available, which although had different etiologies including atlantoaxial hypermobility, deposition of substances, and probably disc herniation.\(^1\)\(^5\) Reported causes of AAS and the retro-odontoid pseudotumor are summarized in Table 1.

Here we reported a non-RA male patient with the atlantoaxial pseudotumor and upper cervical compression myelopathy. He complained neck pain and arthralgia, showing craniocervical OA and periodontoid calcifications and ossifications without AAS. Based on our literature review, CPPD crystal deposition is suggested to be involved.

2. Upper Cervical OA

In 31 patients with atlantoaxial OA, both the atlantoaxial and lateral mass joints, only the atlantoaxial joint, and only lateral mass joints were radiologically involved in 71.0%, 16.1%, and 12.9%, respectively.\(^2\)\(^7\) The importance of CT evaluation, identifying atlantoaxial OA and transverse ligament calcification, was later emphasized in middle-aged and older patients with occipitalgia and limited neck motion because of the difficulty in radiographically assessing overlapping craniocervical bony structures.\(^2\)\(^8\) Upper cervical CT examination of 700 patients without trauma clarified an age-dependent increase in the prevalence of atlantoaxial OA: 16% in 18–25 years, 23% in 25–30 years, 33% in 30–40 years, 54% in 40–50 years, 70% in 50–60 years, 87% in 60–70 years, and 93% in > 70 years.\(^2\)\(^9\) A CT study of 1,543 patients at a trauma center showed an age-dependent decrease in the atlantoaxial interval and increase in bone cyst formation and synovitis with calcium deposition around the dens in > 40 years old.\(^3\)\(^0\) Consecutive 700 patients undergoing brain or paranasal sinus CT exhibited increased transverse ligament calcification with age and advanced atlantoaxial degeneration.\(^3\)\(^1\) Furthermore, mean 32.6-year-old male porters carrying loads on the head radiologically presented joint space narrowing with osteophytes, interspinous and transverse ligament calcifications, and occipito-atlantoaxial joint ankylosis, indicating primary OA, but did not all develop AAS or pseudotumor.\(^3\)\(^2\) Based on these findings, OA is common with age in the atlantoaxial and lateral mass joints. Then, age-related increase in retro-odontoid soft-tissue thick-

| Table 1. Reported causes of atlantoaxial subluxation and the retro-odontoid pseudotumor |
|--------------------------|------------|
| Cause | Reference |
| Atlantoaxial and/or atlantooccipital pathology |
OA	6, 8, 11, 14, 31, 32, 35-37, 60, 61
Primary OA	
Secondary OA	
Inflammation	1-5, 7, 16-18, 33, 43, 44, 53-55
Infection	
Autoimmune diseases (RA, AS, SLE, Sjögren syndrome, and reactive arthritis)	
Pseudogout/CPPD crystal deposition	
Gout	38, 39
Trauma	37
Fracture of the dens	
Congenital anomaly	9, 21
Os odontoideum	
Craniocervical assimilation	
Developmental disease	37
Down syndrome	
Cerebral palsy	
Mucopolysaccharidosis	
Others	
Subaxial pathology (to develop atlantoaxial instability by limiting subaxial motion)	
OALL	20, 22-26
OPLL	
DISH	
Spondylosis (multilevel OA)	
Others	

OA, osteoarthritis; RA, rheumatoid arthritis; AS, ankylosing spondylitis; SLE, systemic lupus erythematosus; CPPD, calcium pyrophosphate dihydrate; OALL, ossification of the anterior longitudinal ligament; OPLL, ossification of the posterior longitudinal ligament; DISH, diffuse idiopathic skeletal hyperostosis.

ness was found on CT\(^3\)\(^3\) and MRI,\(^3\)\(^4\) particularly in male patients with OA and/or undergoing dialysis.\(^3\)\(^4\) Cervical compression myelopathy also resulted from degenerative AAS\(^4\)\(^5\) and/or dens hypertrophy.\(^1\)\(^1\),\(^3\)\(^5\),\(^2\)\(^6\) The periodontoid soft-tissue mass resembling to the pseudotumor was detected in 90% of 108 surgically treated patients with degenerative atlantoaxial instability resulting from trauma and congenital anomaly without RA or CPPD.\(^3\)\(^7\) The pseudotumor with amyloid deposition can be caused by atlantoaxial instability due to secondary OA in hemo-
secondary OA is often associated with the development of atlantoaxial instability and the retro-odontoid pseudotumor.

The presented patient had long-term episodes of neck pain without episodes of chronic mechanical stress in the upper cervical spine. Imaging examination displayed no OALL, DISH, or abnormal biomechanics but spondylosis with periodontoid calcifications and ossifications, suggesting CPPD as a cause of secondary OA.

3. CPPD Disease

The CPPD disease comprises a variety of clinical phenotypes including OA-like and RA-like. Crystals of CPPD are known to induce joint inflammation, bony erosion, and cartilage destruction, possibly resulting in degenerative OA. The prevalence of the chronic polyarticular type of CPPD is roughly 50% while the acute type is approximately 25%. A national study of United States veterans also showed the chronic progression in more than half of cases. While the crowned dens syndrome is a common acute-type CPPD disease in the craniocervical junction, Chronic CPPD crystal deposition of the ligamentum flavum occurs frequently in the cervical spine. On craniocervical CT for acute trauma, a prevalence of atlantoaxial CPPD was 12.5% of 513 patients, increasing with age. Another study detected a similar CT-based prevalence of periodontoid CPPD as 13.5% of 296 patients suspected of brain disease, showing an

<table>
<thead>
<tr>
<th>Table 2. Reported radiological characteristics of primary causes of the retro-odontoid pseudotumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
</tr>
<tr>
<td>Primary OA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Secondary OA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pseudogout/CPPD crystal deposition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

OA, osteoarthritis; AAS, atlantoaxial subluxation; AS, ankylosing spondylitis; OALL, ossification of the anterior longitudinal ligament; OPLL, ossification of the posterior longitudinal ligament; DISH, diffuse idiopathic skeletal hyperostosis; RA, rheumatoid arthritis; VS, vertical subluxation of the atlas; SAS, subaxial subluxation; CPPD, calcium pyrophosphate dihydrate.
age-dependent increase. Although calcification of the transverse and alar ligaments around the atlantoodontoid joint was observed in 60%–70% of patients with pseudogout, the majority were asymptomatic with normal serological findings while only a small percentage of those exhibited neck pain and fever. Recurrent sterile spondylodiscitis and epidural abscess by atlantoaxial CPPD were also observed. The retro-odontoid pseudotumor in patients with CPPD often displays iso-signal intensity on T1-weighted MRIs and iso-signal to high-signal intensity on T2-weighted MRIs. Histopathologically, CPPD crystal deposition can be confirmed from surgical specimens through transoral resection. The CPPD disease causes inflammatory responses more predominantly in the craniocervical junction than in the subaxial spine, demonstrating occipital pain, numbness, and paresthesias as well as lower cranial nerve deficits. Due to CPPD inflammation, atlantoodontoid and occipitocervical OA changes with narrowed joint spaces, osteophytes, and transverse and alar ligament calcifications and/or ossifications were observed. Despite no reports comparing the severity between primary and secondary OA, CPPD-induced secondary OA should manifest more extensive degeneration than primary OA because of persistent inflammation. Reported radiological characteristics of primary causes of the retro-odontoid pseudotumor are summarized in Table 2.

The current patient with long-standing periodical neck pain without serological inflammation would suffer from chronic CPPD with OA progression in the craniovertebral region. The identified retro-odontoid pseudotumor had iso-signal intensity on T1-weighted MRIs and low-signal intensity on T2-weighted MRIs, showing a similar pattern to OA rather than to CPPD. Therefore, this pseudotumor can be developed by secondary OA-mediated biomechanical alteration rather compared to CPPD inflammation.

<table>
<thead>
<tr>
<th>Table 3. Reported advantages and disadvantages of treatment for the retro-odontoid pseudotumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Conservative management with a cervical collar</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C1 decompression alone</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C1–2 fusion without decompression</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C1–2 or occipitocervical fusion with decompression</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Anterior decompression with fusion</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
4. Treatment

Conservative treatment by neck collar was adapted for patients who had the difficulty in undergoing surgery due to serious complications and/or who rejected surgery, as the size reduction in the retro-odontoid pseudotumor and recovery of symptoms have been reported.57,58 Nevertheless, surgery is the first selection for patients suffering from pseudotumor-induced compression myelopathy.59 Anterior decompression by translaminar odontoid process and pseudotumor resection (combined with C1–2 posterior fusion) achieved good clinical and neurological outcomes.6,24,25,60 More recent papers presented a remarkable pseudotumor size reduction even with the disappearance by C1–2 posterior fusion only.19,61,62 Currently, posterior approach is the primary strategy based on pseudotumor pathologies of soft-tissue swelling and atlantoaxial instability. Then, spinal cord compression by the anterior pseudotumor or posterior C1 arch even after manual AAS reduction may require decompression with fusion. Moreover, C1 laminectomy alone is an acceptable option with good clinical results including pseudotumor size reduction, similar to decompression and fusion, and nonworsened AAS.63-65 In a comparative study between the retro-odontoid pseudotumor between posterior fusion and decompression alone, recovery rate at the mean 54-month final follow-up did not differ but pseudotumor regression was more frequent in the fusion group (100% vs. 42%), resulting in the recommendation of fusion irrespective of atlantoaxial instability.66 Further comparative studies regarding the need for stabilization and decompression are required. Reported advantages and disadvantages of treatment for the retro-odontoid pseudotumor are summarized in Table 3.

In our patient, posterior C1 laminectomy was selected because of mild myelopathy without marked AAS. Advantages of decompression alone are less invasive and avoidable from complications according to bone grafting and/or fusion surgery.67-70 Disadvantages would be residual neck pain and nonexclusive future atlantoaxial instability and also pseudotumor progression.28 Careful follow-up is necessary.

CONCLUSION

This is a case report of an elderly male patient suffering from neck pain and compression myelopathy caused by the retro-odontoid pseudotumor without RA or AAS. Although prior articles described the atlantoodontoid pseudotumor with upper cervical spondylosis, most cases were associated not with primary OA but with secondary OA.32 Based on periodontoid cal-ifications and ossifications, the pseudotumor would occur with chronic inflammatory CPPD crystal deposition. Subclinical CPPD progression around the atlantoaxial joint facilitates secondary OA development and retro-odontoid pannus formation, which can be enough severe to induce compression myelopathy in non-RA patients without AAS. The elderly population rapidly increases in the world; therefore, more careful attention around the craniocervical region should be paid to identify compression myelopathy associated with OA and CPPD.

CONFLICT OF INTEREST

The authors have nothing to disclose.

REFERENCES

8. Okada K, Sato K, Abe E. Hypertrophic dens resulting in cervical myelopathy: histologic features of the hypertrophic
12:592-601.
64. Kakutani K, Doita M, Yoshikawa M, et al. C1 laminectomy for retro-odontoid pseudotumor without atlantoaxial sub-

I. General Information

Neurospine provides spine clinicians and researchers with peer-reviewed articles on basic and clinical investigation of spine and spinal cord to enhance patient management, education, clinical or experimental research, and professionalism. The journal will consider submissions in areas on cranio-cervical to lumbosacral spine including the followings; neuroscience and pain research, bone mineral research, disc and joint research, bio and industrial technology, pathophysiology, risk factors, symptomatology, imaging, treatment, rehabilitation of spine, and spinal cord/ peripheral nerve diseases. Specifically, basic and technology researches include the most influential research papers from all fields of science and technology, revolutionizing what physicians and researchers practicing the art of spinal neurosurgery worldwide know. Thus, we welcome valuable basic and translational technology research articles to introduce cutting-edge research of fundamental sciences and technology in clinical spinal neurosurgery. Clinical or Basic Research Articles, Review Articles, Case Reports, Technical Notes, and Letters to the Editor written in English will be accepted.

Neurospine, the official journal of ASIA SPINE, the Neurospinal Society of Japan, Taiwan Neurosurgical Spine Society, and the Korean Spinal Neurosurgery Society, is an international peer-reviewed open-access journal which published quarterly (last day of March, June, September, and December). It was first published in March 31, 2004 with Volume 1 and Number 1 with the name “Korean Journal of Spine,” and renamed as “Neurospine” since March 2018. Neurospine is indexed/tracked/covered by Emerging Sources Citation Index (ESCI), PubMed, PubMed Central, KoreaMed, KoMCI, EBSCO host, and Google Scholar.

II. Submission of Manuscript

1. Authors are requested to submit their papers electronically by using online manuscript submission available at http://submit.e-neurospine.org.
2. Corresponding author is responsible for submission and revision of the manuscripts. ID is required for processing and can be generated at the homepage.
3. All authors should sign on the Copyright Release, Author Agreement and Disclosure of Conflict of Interest form to certify that the contents of the manuscript have not been published and are not being considered for publication elsewhere. If any research grant has been given by any private company or group, this information should be described on the form. All authors must sign their autograph by themselves. The form can be downloaded at the homepage of the *Neurospine* (https://e-neurospine.org), and should be submitted at the time of paper submitting.
4. Regarding author information, the list of the authors in the manuscript should include only those who were directly involved in the process of the work. Authors can refer to the guideline by Harvard University in 1999 to find details on authorship (https://hms.harvard.edu/sites/default/files/assets/Ombuds/files/AUTHORSHIP%20GUIDELINES.pdf).
5. Decision for the publication of the submitted manuscript will be made solely by the editorial board.
6. Professional editing in English is recommended for non-native speakers. Editorial office may request an English editing. In cases of accepted manuscripts, we may provide copy editing and English proofreading free of charge.
7. All published papers become the permanent property of the Korean Spinal Neurosurgery Society. Copyrights of all published materials are owned by the Korean Spinal Neurosurgery Society. Permission must be obtained from the Korean Spinal Neurosurgery Society for any commercial use of materials. Every author should sign the copyright transfer agreement forms.

III. Manuscript Preparation

Authors should refer to “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” (http://www.icmje.org/about-icmje/faqs/icmje-recommendations/).

1. Title Page
1) The title pages must be composed of external and internal title pages.
2) The external title page must contain the article title, and full names of all authors with their institutional affiliations both. The type of manuscript (original articles, review articles, case reports, technical notes, letters to the editor, brief communications) should also be addressed. When the work includes multiple authors with different affiliations, the institution where the research was mainly conducted should be spelled out first, and then be followed by foot notes in superscript Arabic numerals.
beside the authors’ names to describe their affiliation in a consecutive order of the numbers. Running head must be included consisting of no more than 65 characters/spaces.

The external title page must also contain the address, telephone and facsimile numbers, and e-mail address of the corresponding author at the bottom of the page, as well as information on the previous presentation of the manuscript in conferences and funding resources, if necessary.

3) The internal title page should only contain the article title. The internal title page must not contain any information on the names and affiliations of the authors.

2. Manuscript Format
1) The manuscript should be composed of no more than 5,000 English words for original and review articles, 3,000 English words for technical reports and case reports except for references, tables, and figures. It should be composed of no more than 600 English words for letters to the editor.
2) The article should be organized in the order of title, abstract, introduction, materials and methods, results, discussion, conclusion, references, tables, and figures or illustrations.
3) There should be no more than 40 references in original articles. In case reports, materials and methods results can be replaced with cases. The number of references should be 20 or less and the figure number 5 or less.
4) Manuscript format may vary in review articles. There should be no more than 100 references in review articles.
5) Text should be written in 11 point fonts with double line spacing.

3. Abstract
1) Objective, Methods, Results, and Conclusion sections should be included in abstract of clinical or laboratory research, but are not necessary in other types of studies.
2) The abstract should include brief descriptions on the objective, methods, results, and conclusion as well as a detailed description of the data. An abstract containing 250 words or less is required for original articles and 200 words or less for case reports and review articles.
3) Abstract can be revised by the decision of editorial board, and some sentences can be modified as a result of revision.
4) A list of key words, with a minimum of two items and maximum of six items, should be included at the end of the abstract.
5) The selection of Key Words should be based on Medical Subject Heading (MeSH) of Index Medicus and the web site (http://www.nlm.nih.gov/mesh/MBrowser.html).

4. Introduction
The introduction should address the purpose of the article concisely, and include background reports mainly relevant to the purpose of the paper. Detailed review of the literature should be addressed in the discussion section.

5. Materials and Methods
1) The article should record research plans, objective, and methods in order, as well as the data analysis strategies and control of bias in the study. Enough details should be furnished for the reader to understand the method(s) without reference to another work in the study described.
2) When reporting experiments with human subjects, the authors must document the approval received from the local Institutional Review Board. When reporting experiments with animal subjects, the authors should indicate whether the handling of the animals was supervised by the research board of the affiliated institution or such. Approved number of IRB must be noted.
3) Photographs disclosing patients must be accompanied by a signed release form from the patient or family permitting publication.
4) Ensure correct use of the terms sex (when reporting biological factors) and gender (identity, psychosocial or cultural factors), and, unless inappropriate, report the sex and/or gender of study participants, the sex of animals or cells, and describe the methods used to determine sex and gender. If the study was done involving an exclusive population, for example in only one sex, authors should justify why, except in obvious cases (e.g., prostate cancer). Authors should define how they determined race or ethnicity and justify their relevance.

6. Results
1) The authors should logically describe their results of observations and analyses performed using methodology given in the previous section and provide actual data.
2) For biometric measurements in which considerable amount of stochastic variation exists, a statistical evaluation is mandatory. The results must be solely from the findings of the current study and not refer to any previous reports.
3) While an effort should be made to avoid overlapping descriptions by Tables and by main text, important trends and points in the Table should be described in the text.

7. Discussion
Discussions about the findings of the research and interpretations in relation to other studies are made. It is necessary to emphasize the new and critical findings of the study, not to repeat the results of the study presented in the previous sections. The meaning and limitation of observed facts should be described, and the conclusion should be related to the objective of the study only when it is supported by the results of the research.
8. Conclusion
The conclusion section should include a concise statement of the major findings of the study in accordance with the study purpose.

9. References
The authors are responsible for the accuracy of the references. Key the references (double-spaced) at the end of the manuscript. End-Note users can access a direct download of the updated Neurospine Publications style at https://www.e-neurospine.org. References should be numbered consecutively in the order in which they are first mentioned in the text. All references cited in the text must be both listed and cited by the reference number (footnotes are not accepted). Use superscript numerals outside periods and commas, inside colons and semicolons. When more than 2 references are cited at a given place in the manuscript, use hyphens to join the first and last numbers of a closed series; use commas without space to separate other parts of a multiple citation (e.g., As reported previously,1,8,9,...The derived data were as follows3,4,12):)
Do not link the references to the text. Cite unpublished data, such as papers submitted but not yet accepted for publication or personal communications, in parentheses in the text. If there are more than three authors, name only the first three authors and then use et al. Refer to the List of Journals Indexed in Index Medicus for abbreviations of journal names, or access the list at https://www.nlm.nih.gov/archive/20130415/tsd/serials/lji.html. Sample references are given below:

- Journal article

- Book chapter

- Entire book

- Software

- Online journals
 5. Friedman SA. Preeclampsia: A review of the role of prostaglan-
IV. Peer Review Process

All manuscripts are considered confidential. They are peer-reviewed by at least 2 anonymous reviewers selected by the Editor. The corresponding author is notified as soon as possible of the Editor’s decision to accept, reject, or ask for revisions. The average time interval for an initial review process that involves both editorial and peer reviews is approximately 1 month; occasionally, there are unavoidable delays, usually because a manuscript needs multiple reviews or several revisions. When manuscripts are returned for revision, a cover letter from the Editor provides directions that should be followed carefully. When submitting the revised manuscript, authors should include a Response Letter, which describes how the manuscript has been revised. A point-by-point response to the Editor should be included with the revised manuscript. Authors who plan to resubmit but cannot meet this deadline should contact the Editorial Office. Manuscripts held for revision will be retained for a maximum of 90 days. The revised manuscript and the author’s comments will be reviewed again. If a manuscript is completely acceptable, according to the criteria set forth in these instructions, it is scheduled for publication in the next available issue.

We neither guarantee the acceptance without review nor very short peer review times for unsolicited manuscripts. Commissioned manuscripts also are reviewed before publication.

We adopt double-blind peer review in which case, not only authors but also reviewers do not know each other.

V. Publication and Charges

1) Once a manuscript is accepted for publication by the journal, it will be sent to the press, and page proofs will be sent to authors. Authors must respond to the page proofs as soon as possible after making necessary corrections of misspellings, and the location of the photographs, figures or tables. Authors can make corrections for only typing errors, and are not allowed to make any author alteration or substantive changes of the text. Proofs must be returned to the press within 48 hours of receipt. No response from the authors within this time frame will lead the publication of the proof read without corrections, and the editorial board will not be responsible for any mistakes or errors occurring in this process.

2) There is no article processing charge (APC), also known as a publication fee including submission fee, for accepted articles.

VI. Ethical Guidelines

1. Research Ethics

1) All of the manuscripts should be prepared in strict observation of research and publication ethics guidelines recommended by the Council of Science Editors (CSE), International Committee of Medical Journal Editors (ICMJE), World Association of Medical Editors (WAME), and the Korean Association of Medical Journal Editors (KAMJE).

2) Any study including human subjects or human data must be reviewed and approved by a responsible institutional review board (IRB). Please refer to the principles embodied in the Declaration of Helsinki (https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/) for all investigations involving human materials.

3) Animal experiments also should be reviewed by an appropriate committee (Institutional Animal Care and Use Committee, IACUC) for the care and use of animals. Also studies with pathogens requiring a high degree of biosafety should pass review of a relevant committee (Institutional Biosafety Committee, IBC). The editor of Neurospine always request submission of copies of informed consents from human subjects in clinical studies or IRB approval documents.

2. Conflict of Interest

1) The corresponding author of an article is asked to inform the Editor of the authors’ potential conflicts of interest possibly influencing their interpretation of data. A potential conflict of interest should be disclosed in the cover letter even when the authors are confident that their judgments have not been influenced in preparing the manuscript. Such conflicts may be financial support or private connections to pharmaceutical companies, political pressure from interest groups, or academic problems. Disclosure form shall be same with ICMJE Uniform Disclosure Form for Potential Conflicts of Interest (http://www.icmje.org/coi_disclosure.pdf).

2) The Editor will decide whether the information on the conflict should be included in the published paper. Before publishing such information, the Editor will consult with the corresponding author. In particular, all sources of funding for a study should be explicitly stated. The Neurospine asks referees to let its Editor know of any conflict of interest before reviewing a particular manuscript.

3. Journal Policies on Authorship and Contributorship

1) Authors are required to make clear of their contribution to their manuscript in cover letter. To be listed as an author one should have contributed substantially to all three categories established
by the International Committee of Medical Journal Editors (ICMJE); (1) conception and design, or acquisition, or analysis and interpretation of data; (2) drafting the article or revising it critically for important intellectual content; and (3) final approval of the version to be published; and (4) agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

2) When a large, multicenter group has conducted the work, the group should identify the individuals who accept direct responsibility for the manuscript. When submitting a manuscript authored by a group, the corresponding author should clearly indicate the preferred citation and identify all individual authors as well as the group name. Journals generally list other members of the group in the Acknowledgments. Acquisition of funding, collection of data, or general supervision of the research group alone does not constitute authorship. Authors are responsible for replying to all questions asked by reviewers or editors that relate to the accuracy or integrity of any part of the work. All persons who have made a substantial contribution, but who are not eligible as authors, should be named in the acknowledgments. Authors are expected to consider carefully the way authors should be listed and ordered before submitting their manuscripts, and to provide a definitive list of authors with their original submission. Any addition, deletion, or rearrangement of author names in the authorship list should be made before the manuscript has been accepted—and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for requesting a change in the list of authors; and (b) written confirmation (by e-mail or letter) from all authors to say that they agree with the addition, removal, or rearrangement.

4. Redundant Publication and Plagiarism

1) Redundant publication is defined as “reporting (publishing or attempting to publish) substantially the same work more than once, without attribution of the original source(s)”. Characteristics of reports that are substantially similar include the following: (a) “at least one of the authors must be common to all reports (if there are no common authors, it is more likely plagiarism than redundant publication),” (b) “the subject or study populations are often the same or similar,” (c) “the methodology is typically identical or nearly so,” and (d) “the results and their interpretation generally vary little, if at all.”

2) When submitting a manuscript, authors should include a letter informing the editor of any potential overlap with other already published material or material being evaluated for publication and should also state how the manuscript submitted to Neurospine differs substantially from this other material. If all or part of your patient population was previously reported, this should be mentioned in the Materials and Methods, with citation of the appropriate reference(s).

3) The editorial committee checks the similarity by using the iThenticate (http://www.ithenticate.com/) program for all submitted articles to prevent plagiarism. The editorial committee rejects the article suspected of plagiarism and asks the author to check whether it is plagiarized and make a resubmission.

5. Readership

It is primarily for clinicians and researchers who care patients with spine and spinal cord diseases. They are able to obtain tailored information to adopt for their research and practice. Its readership can be expanded to other positions: • Researchers can get the recent topics of clinical research in spine and spinal cord field and detailed research methods; • Clinicians in the field can get the new information and recent development for care of patients; • Medical teacher can access and adopt a variety of data in medical education; • Allied health professionals including nurses are able to get the recent information for care of patients with spine and spinal cord diseases; • Medical health students can understand the recent trends of the field and interesting cases for their work; • Policy makers are able to reflect the results of the articles to the nation-wide health care policies for patients with spine and spinal cord diseases; • The public, especially family of patients with spine and spinal cord diseases are able to read the advancement in their family’s diseases so that they have a better knowledge on the diseases and a confidence in the clinicians’ devotion to their family.

6. Obligation to Register Clinical Trial

1) Clinical trial defined as “any research project that prospectively assigns human subjects to intervention and comparison groups to study the cause-and-effect relationship between a medical intervention and a health outcome” should be registered to the primary registry to be prior publication.

7. Process for Identification of and Dealing With Allegations of Research Misconduct

When the Journal faces suspected cases of research and publication misconduct such as a redundant (duplicate) publication, plagiarism, fabricated data, changes in authorship, undisclosed conflicts of interest, an ethical problem discovered with the submitted manuscript, a
reviewer who has appropriated an author's idea or data, complaints against editors, and other issues, the resolving process will follow the flowchart provided by the Committee on Publication Ethics (http://publicationethics.org/resources/flowcharts). The Editorial Board will discuss the suspected cases and reach a decision. We will not hesitate to publish errata, corrigenda, clarifications, retractions, and apologies when needed.

Neurospine adheres to the research and publication ethics policies outlined in International Standards for Editors and Authors (http://publicationethics.org) and the Uniform Requirements for Manuscripts Submitted to Biomedical Journals (http://icmje.org). Any studies involving human subject must comply with the principles of the World Medical Association Declaration of Helsinki. Clinical research should be approved by the Institutional Review Board, as well through patient consent. A patient's personal information cannot be published in any form. However, if it is absolutely necessary to use a patient’s personal information, the consent of the patient or his/her guardian will be needed before publishing. Animal studies should be performed in compliance with all relevant guidelines, observing the standards described in the NIH Guide for the Care and Use of Laboratory Animals.

Cases that require editorial expressions of concern or retraction shall follow the COPE flowcharts from: http://publicationethics.org/resources/flowcharts. If correction is needed, it will follow the ICMJE Recommendation for Corrections, Retractions, Retifications, and Version Control available from: http://www.icmje.org/recommendations/browse/publishing-and-editorial-issues/corrections-and-version-control.html as follows:

Honest errors are a part of science and publishing and require publication of a correction when they are detected. Corrections are needed for errors of fact. Minimum standards are as follows: First, it shall publish a correction notice as soon as possible, detailing changes from and citing the original publication on both an electronic and numbered print page that is included in an electronic or a print Table of Contents to ensure proper indexing; Second, it shall post a new article version with details of the changes from the original version and the date(s) on which the changes were made through CrossMark; Third, it shall archive all prior versions of the article. This archive can be either directly accessible to readers; and Fourth, previous electronic versions shall prominently note that there are more recent versions of the article via CrossMark.

8. Handling Complaints and Appeals
The policy of the journal is primarily aimed at protecting the authors, reviewers, editors, and the publisher of the journal. If not described below, the process of handling complaints and appeals follows the guidelines of the Committee on Publication Ethics available from: https://publicationethics.org/appeals

Who complains or makes an appeal?
Submitters, authors, reviewers, and readers may register complaints and appeals in a variety of cases as follows: falsification, fabrication, plagiarism, duplicate publication, authorship dispute, conflict of interest, ethical treatment of animals, informed consent, bias or unfair/inappropriate competitive acts, copyright, stolen data, defamation, and legal problem. If any individuals or institutions want to inform the cases, they can send a letter to editor through https://www.e-neurospine.org/about/contact.php. For the complaints or appeals, concrete data with answers to all factual questions (who, when, where, what, how, why) should be provided.

Who is responsible to resolve and handle complaints and appeals?
The Editor, Editorial Board, or Editorial Office is responsible for them.

What may be the consequence of remedy?
It depends on the type or degree of misconduct. The consequence of resolution will follow the guidelines of the Committee of Publication Ethics (COPE).

9. Postpublication Discussions and Corrections
The postpublication discussion is available through letter to the editor. If any readers have a concern on any articles published, they can submit letter to the editor on the articles. If there are any errors or mistakes in the article, it can be corrected through errata, corrigenda, or retraction.

10. Policies on data sharing and reproducibility
Until 2020, authors will be encouraged to share their data openly, but starting in 2021, they will be mandated to do so. The related regulation follows the open data sharing policy outlined below.

1) Open data sharing policy
For clarification on result accuracy and reproducibility of the results, raw data or analysis data will be deposited to a public repository, for example, Harvard Dataverse (https://dataverse.harvard.edu/) after acceptance of the manuscript. Therefore, submission of the raw data or analysis data is mandatory. If the data is already a public one, its URL site or sources should be disclosed. If data cannot be publicized, it can be negotiated with the editor. If there are any inquiries on depositing data, authors should contact the editorial office.

2) Clinical data sharing policy
This journal follows the data sharing policy described in “Data Sharing Statements for Clinical Trials: A Requirement of the International Committee of Medical Journal Editors” (https://doi.org/10.3346/jkms.2017.32.7.1051). As of July 1, 2018 manuscripts submitted to ICMJE journals that report the results of interventional clinical trials must contain a data sharing statement as described below. Clinical trials that begin enrolling participants on or after January 1, 2019 must include a data sharing plan in the trials registration. The ICMJE’s policy regarding trial registration is explained at http://www.icmje.org/recommendations/browse/publishing-and-editorial-issues/clinical-trial-registration.html. If the data sharing plan changes
Table. Examples of Data Sharing Statements That Fulfill These ICMJE Requirements*

<table>
<thead>
<tr>
<th>Will individual participant data be available (including data dictionaries)?</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
<th>Example 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

| What data in particular will be shared? | All of the individual participant data collected during the trial, after deidentification. | Individual participant data that underlie the results reported in this article, after deidentification (text, tables, figures, and appendices). | Individual participant data that underlie the results reported in this article, after deidentification (text, tables, figures, and appendices). | Not available |

| When will data be available (start and end dates)? | Immediately following publication. No end date. | Beginning 3 months and ending 5 years following article publication. | Beginning 9 months and ending 36 months following article publication. | Not applicable |

| With whom? | Anyone who wishes to access the data. | Researchers who provide a methodologically sound proposal. | Investigators whose proposed use of the data has been approved by an independent review committee (learned intermediary) identified for this purpose. | Not applicable |

| For what types of analyses? | Any purpose. | To achieve aims in the approved proposal. | For individual participant data meta-analysis. | Not applicable |

| By what mechanism will data be made available? | Data are available indefinitely at (Link to be included). | Proposals should be directed to xxx@yyy. To gain access, data requestors will need to sign a data access agreement. Data are available for 5 years at a third party website (Link to be included). | Proposals may be submitted up to 36 months following article publication. After 36 months the data will be available in our University's data warehouse but without investigator support other than deposited metadata. Information regarding submitting proposals and accessing data may be found at (Link to be provided). | Not applicable |

* These examples are meant to illustrate a range of, but not all, data sharing options.

after registration this should be reflected in the statement submitted and published with the manuscript, and updated in the registry record. All of the authors of research articles that deal with interventional clinical trials must submit data sharing plan of example 1 to 4 in Table 1. Based on the degree of sharing plan, authors should deposit their data after deidentification and report the DOI of the data and the registered site.

For the policies on the research and publication ethics not stated in this instructions, International standards for editors and authors (https://publicationethics.org/resources/resources-and-further-reading/international-standards-editors-and-authors) can be applied.

All correspondences, business communications and manuscripts should be mailed to:

Editor-in-Chief: Yoon Ha
Editorial Office
Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
Tel: +82-2-2228-2172, Fax: +82-2-313-5970
E-mail: theeneurospine@gmail.com
Copyright Release, Author Agreement, Human and Animal Right, and Disclosure of Conflict of Interest

The author(s) submit my/our manuscript with the following title

__

In consideration of the Editorial Board reviewing for the Neurospine publishing.

1. Copyright Release and Author Agreement
 I/we undersigned hereby transfer all rights, interest, copyright and digital copyright related to the journal to the Neurospine upon acceptance of the manuscript for publication. I/we have all rights, such as right to apply patents and right to use part or all of the contents of the manuscript, except copyright. I/we can use materials from the manuscript under written agreement of the Neurospine, and in this case, I/we will clarify the reference. All authors have made a concrete and intellectual contribution to the content of the manuscript, and will take public responsibility for its content.
 The author(s) certify that the manuscript was prepared in strict observation of research and publication ethics guidelines recommended by the editorial committee of the Neurospine.
 The author(s) certify that the contents of the manuscript have not been published and are not being considered for publication elsewhere.

2. Human and Animal Right
 In case of experimenting on human, the author(s) have certified that the process of the research is in accordance with ethical standards of Helsinki declaration, domestic and foreign committees that preside over human experiment.
 If any doubts are raised whether the research was proceeded in accordance with the declaration, the author(s) would explain it.
 In case of experimenting on animals, the author(s) have certified that the author(s) had followed the domestic and foreign guideline related to experiment of animals in a laboratory.

3. Disclosure of Conflict of Interest
 The author(s) of the journal have clarified everything that interest may arise such as research expenses, consultant expenses, stock, particularly concerned person of the judges on the document of disclosure of conflict of interest.
 If there are conflicts of interest, authors should state their content on the title page of the manuscript.

<table>
<thead>
<tr>
<th>Author’s name</th>
<th>Author’s Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Mandatory components of a manuscript
 1) Formats and contents of the manuscripts are checked by corresponding author. ☐ Yes / ☐ No
 2) All manuscripts should be written in English. Manuscripts may be no longer than 5,000 English words
 for original articles, 3,000 English words for technical reports and case reports except for references,
 tables, and figures. ☐ Yes / ☐ No
 3) Manuscripts should be prepared in the following orders.
 Original article: external title page, internal title page, abstract, key words, introduction, materials, and
 methods, results, discussion, conclusion, references, table, and figure legends.
 Case report: external title page, internal title page, abstract, key words, introduction, case report,
 discussion, conclusion, references, table, and figure legends.
 4) "Editing in English is done prior to submission of a manuscript." ☐ Yes / ☐ No

2. External title page
 The external title page should be a separate file, and must contain names and affiliations of all authors and
 contact information of the corresponding author. ☐ Yes / ☐ No

3. Internal title page
 Only the English title of the manuscript is listed. Any information on the names and affiliations of the
 authors is not shown on the internal title page. ☐ Yes / ☐ No

4. Abstract
 1) Abstract should have no longer than 250 words for original articles and 200 words for case reports and
 review articles. ☐ Yes / ☐ No
 2) Abstract includes Objective, Methods, Results, and Conclusion in clinical or laboratory research. ☐ Yes / ☐ No
 3) The selection of Key Words is based on medical subject headings (MeSH) terms. ☐ Yes / ☐ No

5. Manuscript
 1) Text is written in 11-point fonts with double line spacing. ☐ Yes / ☐ No
 2) Figures and tables are cited in numerical order in the order they are mentioned in the text. ☐ Yes / ☐ No

6. References
 1) References should be numbered consecutively in Arabic numeric order in which they are first men-
 tioned in the text. ☐ Yes / ☐ No
 2) All references cited in the text must be both listed and cited by the reference number (footnotes are not
 accepted). ☐ Yes / ☐ No
 3) When more than 2 references are cited at a given place in the manuscript, use hyphens to join the first
 and last numbers of a closed series; use commas without space to separate other parts of a multiple ci-
 tation (e.g., As reported previously,1,3-8,19 ...The derived data were as follows3,4,12 ...)
 ☐ Yes / ☐ No
 4) If there are more than 3 authors in end-reference list, name only the first 3 authors and then use et al. ☐ Yes / ☐ No
 5) Use superscript numerals outside periods and commas, inside colons and semicolons. ☐ Yes / ☐ No

7. Tables, Figures and Illustrations
 1) Tables and figures are prepared in separate files. ☐ Yes / ☐ No
 2) Figures are submitted individually not incorporated into one file. ☐ Yes / ☐ No
 3) Figures and illustrations are saved in JPG or TIF file format and have a resolution of 300 DPI or more.
 (Line art should have resolution of 1,200 dpi or more) ☐ Yes / ☐ No
8. Copyright Release, Author Agreement, Human and Animal Right, and Disclosure of Conflict of Interest
 All authors signed on the Copyright Release, Author Agreement, Human and Animal Right, and Disclosure of Conflict of Interest form to verify that the purpose of the research is not related to personal interests and the manuscript was prepared in strict observation of research and publication ethics guidelines.
 The above form is submitted with the manuscript.
 ☐ Yes / ☐ No

9. Ethical approval of studies and informed consent
 For all manuscripts reporting data from studies involving human participants or animals, formal review and approval, or formal review and waiver, by an appropriate institutional review board or ethics committee is required and should be described in the Materials and Methods section.
 ☐ Yes / ☐ No