2. Yeung CM, Schoenfeld AJ, Lightsey HM 4th, et al. Trends in spinal surgery performed by American Board of Orthopaedic Surgery Part II Candidates (2008 to 2017). J Am Acad Orthop Surg 2021;29:e563-75.
3. Gates M, Tang AR, Godil SS, et al. Defining the relative utility of lumbar spine surgery: a systematic literature review of common surgical procedures and their impact on health states. J Clin Neurosci 2021;93:160-7.
4. Meng B, Bunch J, Burton D, et al. Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies. Eur Spine J 2021;30:22-33.
5. Makanji H, Schoenfeld AJ, Bhalla A, et al. Critical analysis of trends in lumbar fusion for degenerative disorders revisited: influence of technique on fusion rate and clinical outcomes. Eur Spine J 2018;27:1868-76.
6. Chang SY, Nam Y, Lee J, et al. Clinical significance of radiologic improvement following single-level oblique lateral interbody fusion with percutaneous pedicle screw fixation. Orthopedics 2020;43:e283-90.
7. Limthongkul W, Tanasansomboon T, Yingsakmongkol W, et al. Indirect decompression effect to central canal and ligamentum flavum after extreme lateral lumbar interbody fusion and oblique lumbar interbody fusion. Spine (Phila Pa 1976) 2020;45:E1077-84.
8. Fujibayashi S, Hynes RA, Otsuki B, et al. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976) 2015;40:E175-82.
10. Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976) 1997;22:691-9. discussion 700.
12. Molinares DM, Davis TT, Fung DA. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs: an MRI study. J Neurosurg Spine 2016;24:248-55.
13. Julian Li JX, Mobbs RJ, Phan K. Morphometric MRI imaging study of the corridor for the oblique lumbar interbody fusion technique at L1-L5. World Neurosurg 2018;111:e678-85.
15. Ng JP, Kaliya-Perumal AK, Tandon AA, et al. The oblique corridor at L4-L5: a radiographic-anatomical study into the feasibility for lateral interbody fusion. Spine (Phila Pa 1976) 2020;45:E552-9.
16. Orita S, Shiga Y, Inage K, et al. Technical and conceptual review on the L5-S1 oblique lateral interbody fusion surgery (OLIF51). Spine Surg Relat Res 2021;5:1-9.
18. Ng JP, Scott-Young M, Chan DN, et al. The feasibility of anterior spinal access: the vascular corridor at the L5-S1 level for anterior lumbar interbody fusion. Spine (Phila Pa 1976) 2021;46:983-9.
19. Chung NS, Lee HD, Chung HW, et al. Influence of vascular anatomy on the radiologic outcomes in oblique lateral interbody fusion at L5-S1. Clin Spine Surg 2022;35:E36-40.
20. DiGiorgio AM, Edwards CS, Virk MS, et al. Stereotactic navigation for the prepsoas oblique lateral lumbar interbody fusion: technical note and case series. Neurosurg Focus 2017;43:E14.
21. Farah K, Leroy HA, Karnoub MA, et al. Does the hip positioning matter for oblique lumbar interbody fusion approach? A morphometric study. Eur Spine J 2020;29:306-13.
24. Louie PK, Varthi AG, Narain AS, et al. Stand-alone lateral lumbar interbody fusion for the treatment of symptomatic adjacent segment degeneration following previous lumbar fusion. Spine J 2018;18:2025-32.
25. Guo HZ, Tang YC, Guo DQ, et al. Stability evaluation of oblique lumbar interbody fusion constructs with various fixation options: a finite element analysis based on three-dimensional scanning models. World Neurosurg 2020;138:e530-8.
26. Fang G, Lin Y, Wu J, et al. Biomechanical comparison of stand-alone and bilateral pedicle screw fixation for oblique lumbar interbody fusion surgery-a finite element analysis. World Neurosurg 2020;141:e204-12.
30. Xie T, Wang C, Yang Z, et al. Minimally invasive oblique lateral lumbar interbody fusion combined with anterolateral screw fixation for lumbar degenerative disc disease. World Neurosurg 2020;135:e671-8.
31. König MA, Grevitt MP, Quraishi NA, et al. The safe use of long screws in L5/S1 stand-alone anterior interbody fusion for olisthesis cases. Br J Neurosurg 2018;32:28-31.
32. Norotte G, Barrios C. Clinical and radiological outcomes after stand-alone ALIF for single L5-S1 degenerative discopathy using a PEEK cage filled with hydroxyapatite nanoparticles without bone graft. Clin Neurol Neurosurg 2018;168:24-9.
33. Chung HW, Jeon CH, Lee HD, et al. Effectiveness of supplemental screw fixation for the prevention of anterior cage migration in oblique lateral interbody fusion at L5-S1. J Orthop Sci 2021 Aug 8:S0949-2658.
https://doi.org/10.1016/j.jos.2021.07.006. [Epub].
34. Ahmadian A, Verma S, Mundis GM Jr, et al. Minimally invasive lateral retroperitoneal transpsoas interbody fusion for L4-5 spondylolisthesis: clinical outcomes. J Neurosurg Spine 2013;19:314-20.
35. Shin SH, Choi WG, Hwang BW, et al. Microscopic anterior foraminal decompression combined with anterior lumbar interbody fusion. Spine J 2013;13:1190-9.
36. Manzur MK, Samuel AM, Morse KW, et al. Indirect lumbar decompression combined with or without additional direct posterior decompression: a systematic review. Global Spine J 2021 May 20:21925682211013011
https://doi.org/10.1177/21925682211013011. [Epub].
39. Park D, Mummaneni PV, Mehra R, et al. Predictors of the need for laminectomy after indirect decompression via initial anterior or lateral lumbar interbody fusion. J Neurosurg Spine 2020 Jan 24:1-7.
https://doi.org/10.3171/2019.11.SPINE19314. [Epub].
40. Shimizu T, Fujibayashi S, Otsuki B, et al. Indirect decompression with lateral interbody fusion for severe degenerative lumbar spinal stenosis: minimum 1-year MRI follow-up. J Neurosurg Spine 2020 Mar 13:1-8.
https://doi.org/10.3171/2020.1.SPINE191412. [Epub].
41. Nakashima H, Kanemura T, Satake K, et al. Indirect decompression on MRI chronologically progresses after immediate postlateral lumbar interbody fusion: the results from a minimum of 2 years follow-up. Spine (Phila Pa 1976) 2019;44:E1411-8.
42. Shimizu T, Fujibayashi S, Otsuki B, et al. Indirect decompression via oblique lateral interbody fusion for severe degenerative lumbar spinal stenosis: a comparative study with direct decompression transforaminal/posterior lumbar interbody fusion. Spine J 2021;21:963-71.
43. Boody BS, Savage JW. Evaluation and treatment of lumbar facet cysts. J Am Acad Orthop Surg 2016;24:829-42.
44. Massey GM, Caputo AM, Michael KW, et al. Lumbar facet cyst resolution following anterior interbody fusion. J Clin Neurosci 2013;20:1771-3.
45. Chang SY, Kim J, Kim Y, et al. The fate of lumbar facet cyst after indirect decompression using oblique lateral interbody fusion in degenerative spondylolisthesis. Orthopedics 2021;44:306-12.
50. Zhu L, Wang JW, Zhang L, et al. Outcomes of oblique lateral interbody fusion for adult spinal deformity: a systematic review and meta-analysis. Global Spine J 2022;12:142-54.
51. Saigal R, Akbarnia BA, Eastlack RK, et al. Anterior column realignment: analysis of neurological risk and radiographic outcomes. Neurosurg 2020;87:E347-54.
52. Sadrameli SS, Davidov V, Lee JJ, et al. Hybrid anterior column realignment-pedicle subtraction osteotomy for severe rigid sagittal deformity. World Neurosurg 2021;151:e308-16.
55. Konomi T, Kaneko S, Zakaria AF, et al. Clinical efficacies of the minimal retroperitoneal approach for infectious spondylodiscitis: a clinical case series. Spine Surg Relat Res 2021;5:176-81.
57. Shimizu T, Fujibayashi S, Otsuki B, et al. Indirect decompression through oblique lateral interbody fusion for revision surgery after lumbar decompression. World Neurosurg 2020;141:e389-99.
58. Masuda S, Fujibayashi S, Kimura H, et al. Salvage oblique lateral interbody fusion for pseudarthrosis after posterior/transforaminal lumbar interbody fusion: a technical note. World Neurosurg 2021;152:107-12.
60. Abel NA, Januszewski J, Vivas AC, et al. Femoral nerve and lumbar plexus injury after minimally invasive lateral retroperitoneal transpsoas approach: electrodiagnostic prognostic indicators and a roadmap to recovery. Neurosurg Rev 2018;41:457-64.
61. Abe K, Orita S, Mannoji C, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine (Phila Pa 1976) 2017;42:55-62.
62. Tannoury T, Kempegowda H, Haddadi K, et al. Complications associated with minimally invasive anterior to the psoas (ATP) fusion of the lumbosacral spine. Spine (Phila Pa 1976) 2019;44:E1122-9.
63. Pumberger M, Hughes AP, Huang RR, et al. Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J 2012;21:1192-9.
64. Walker CT, Farber SH, Cole TS, et al. Complications for minimally invasive lateral interbody arthrodesis: a systematic review and meta-analysis comparing prepsoas and transpsoas approaches. J Neurosurg Spine 2019 Jan 25:1-5.
https://doi.org/10.3171/2018.9.SPINE18800. [Epub].
66. Koike Y, Kotani Y, Terao H, et al. Comparison of outcomes of oblique lateral interbody fusion with percutaneous posterior fixation in lateral position and minimally invasive transforaminal lumbar interbody fusion for degenerative spondylolisthesis. Asian Spine J 2021;15:97-106.
69. Kotani Y, Ikeura A, Tokunaga H, et al. Single-level controlled comparison of OLIF51 and percutaneous screw in lateral position versus MIS-TLIF for lumbosacral degenerative disorders: clinical and radiologic study. J Orthop Sci 2021;26:756-64.
70. Lin GX, Akbary K, Kotheeranurak V, et al. Clinical and radiologic outcomes of direct versus indirect decompression with lumbar interbody fusion: a matched-pair comparison analysis. World Neurosurg 2018;119:e898-909.
72. Tatsumi R, Lee YP, Khajavi K, et al. In vitro comparison of endplate preparation between four mini-open interbody fusion approaches. Eur Spine J 2015;24 Suppl 3:372-7.
73. Xi Z, Burch S, Mummaneni PV, et al. Supine anterior lumbar interbody fusion versus lateral position oblique lumbar interbody fusion at L5-S1: a comparison of two approaches to the lumbosacral junction. J Clin Neurosci 2020;82:134-40.
74. Chung HW, Lee HD, Jeon CH, et al. Comparison of surgical outcomes between oblique lateral interbody fusion (OLIF) and anterior lumbar interbody fusion (ALIF). Clin Neurol Neurosurg 2021;209:106901.
75. Orita S, Inage K, Sainoh T, et al. Lower lumbar segmental arteries can intersect over the intervertebral disc in the oblique lateral interbody fusion approach with a risk for arterial injury: radiological analysis of lumbar segmental arteries by using magnetic resonance imaging. Spine (Phila Pa 1976) 2017;42:135-42.
76. Wu T, Xiao L, Liu C, et al. Anatomical study of the lumbar segmental arteries in relation to the oblique lateral interbody fusion approach. World Neurosurg 2020;138:e778-86.
77. Lee HJ, Kim JS, Ryu KS, et al. Ureter injury as a complication of oblique lumbar interbody fusion. World Neurosurg 2017;102:693.e7-14.
78. Yoon SG, Kim MS, Kwon SC, et al. Delayed ureter stricture and kidney atrophy after oblique lumbar interbody fusion. World Neurosurg 2020;134:137-40.
79. Woods KR, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J 2017;17:545-53.
80. Anand N, Baron EM. Urological injury as a complication of the transpsoas approach for discectomy and interbody fusion. J Neurosurg Spine 2013;18:18-23.
82. Fineberg SJ, Nandyala SV, Kurd MF, et al. Incidence and risk factors for postoperative ileus following anterior, posterior, and circumferential lumbar fusion. Spine J 2014;14:1680-5.
83. Park SC, Chang SY, Mok S, et al. Risk factors for postoperative ileus after oblique lateral interbody fusion: a multivariate analysis. Spine J 2021;21:438-45.
84. Hu Z, He D, Gao J, et al. The influence of endplate morphology on cage subsidence in patients with stand-alone oblique lateral lumbar interbody fusion (OLIF). Global Spine J 2021 Mar 9:2192568221992098
https://doi.org/10.1177/2192568221992098. [Epub].
85. Marchi L, Abdala N, Oliveira L, et al. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine 2013;19:110-8.
86. Malham GM, Parker RM, Blecher CM, et al. Assessment and classification of subsidence after lateral interbody fusion using serial computed tomography. J Neurosurg Spine 2015;23:589-97.
87. Rentenberger C, Okano I, Salzmann SN, et al. Perioperative risk factors for early revisions in stand-alone lateral lumbar interbody fusion. World Neurosurg 2020;134:e657-63.
88. Okano I, Jones C, Rentenberger C, et al. The association between endplate changes and risk for early severe cage subsidence among standalone lateral lumbar interbody fusion patients. Spine (Phila Pa 1976) 2020;45:E1580-7.
89. Tempel ZJ, McDowell MM, Panczykowski DM, et al. Graft subsidence as a predictor of revision surgery following standalone lateral lumbar interbody fusion. J Neurosurg Spine 2018;28:50-6.
90. Wu H, Cheung JPY, Zhang T, et al. The role of hounsfield unit in intraoperative endplate violation and delayed cage subsidence with oblique lateral interbody fusion. Global Spine J 2021 Nov 4:21925682211052515
https://doi.org/10.1177/21925682211052515. [Epub].
91. Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 2004;4:190S-194S.
92. Chang SY, Chae IS, Mok S, et al. Can indirect decompression reduce adjacent segment degeneration and the associated reoperation rate after lumbar interbody fusion? A systemic review and meta-analysis. World Neurosurg 2021;153:e435-45.
95. Ouchida J, Kanemura T, Satake K, et al. Simultaneous single-position lateral interbody fusion and percutaneous pedicle screw fixation using O-arm-based navigation reduces the occupancy time of the operating room. Eur Spine J 2020;29:1277-86.
97. Diaz-Aguilar LD, Shah V, Himstead A, et al. Simultaneous robotic single-position surgery (SR-SPS) with oblique lumbar interbody fusion: a case series. World Neurosurg 2021;151:e1036-43.
99. Pham MH, Gupta M, Stone LE, et al. Minimally invasive L5-S1 oblique lumbar interbody fusion with simultaneous robotic single position posterior fixation: 2-dimensional operative video. Oper Neurosurg (Hagerstown) 2021;21:E543.